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Lecture Schedule

We focus on the mathematical foundations of diffusion models
through low-dim structures and their scientific applications:

• Introduction of Diffusion Models
• Lecture I: Generalization of Learning Diffusion Models
• Lecture II: Controllability of Diffusion Models
• Lecture III: From Theory to Scientific Applications
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Application of Diffusion Models: Solving Inverse Problems

• Inverse problems are common across scientific applications.1

• Diffusion models learn strong priors to effectively solve them.

1Zheng et al., InverseBench: Benchmarking Plug-and-Play Diffusion Models for Inverse Problems
in Physical Sciences, ICLR 2025.
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Outline

1. Image Reconstruction Problems

2. Data Assimilation

3. Conclusion & Acknowledgement
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Image Reconstruction Problems



Inverse Problems

Goal: Recover signalx ∈ Rn from noisy measurements y ∈ Rm

(m ≪ n):

y = A(x) + n

where A(·) is a forward model, and n is some measurement
noise.
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Leverage Prior Knowledge for Solving Ill-Posed Inverse Problem

• Conventional method: requires dense sampling
• Regularization method: sparsity in transformed domain
• Data driven method: learned prior from a data-driven way
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Recap: Score-based Diffusion Models

• Forward diffusion process as stochastic differential equation
(SDE)

• Generative reverse SDE: uses score function to sample from
prior p(x)

Diffusion models learn data prior by modeling data distribution
through unsupervised training.
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Solving Inverse Problems via Conditional Sampling

Goal: Recover signal x ∈ Rn from y ∈ Rm (m ≪ n):

y = A(x) + n

with forward model A(·) and noise corruption n.

Idea of applying diffusion models: sampling from p(x|y) instead of
p(x) within the diffusion reverse process:

∇ log pt(xt | y) = ∇ log pt(xt)︸ ︷︷ ︸
we already have

+∇ log pt(y | xt)︸ ︷︷ ︸
missing & intractable

.

• Advantages: unsupervised learning with limited assumptions,
and comparable or better performance to supervised learning.

• Challenges: Estimating the posterior score ∇ log pt(y | xt)?
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Diffusion Posterior Sampling (DPS, Chung et al. 2023)

• Posterior score decomposition:

∇ log pt(xt | y) = ∇ log pt(xt) +∇ log pt(y | xt)

• Posterior mean estimation (Tweedie’s Formula):

x̂0 := E[x0 | xt] =
1√
ᾱ(t)

(xt + (1− ᾱ(t))∇ log pt(xt))

• Approximating ∇ log pt(y | xt) via

p(y | xt) ≃ p(y | x̂0).
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Diffusion Posterior Sampling (DPS, Chung et al. 2023)

• Decomposing posterior score:

∇ log pt(xt | y) = ∇ log pt(xt) +∇ log pt(y | xt)

• Take backpropagation through the network:

∇xt
log p(y | xt) ≃ ∇xt

log p(y | x̂0)

≃ −η∇xt
∥y −A(x̂0(xt))∥22 .
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Diffusion Posterior Sampling (DPS, Chung et al. 2023)

Figure 1: Diffusion Posterior Sampling Process

Guide the unconditional diffusion sampling process with the
conditional gradient −η∇xt

∥y −A(x̂0(xt))∥22.
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Limitations of Coupled Sampling & Data Consistency

• Limitation 1: large number of sampling steps.
• To ensure data consistency, it cannot benefit from faster samplers

such as DDIM (Song et al. 2020) and Consistency Models (Song et
al. 2023).

• This is because coupled sampling and data consistency.
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Limitations of DPS

• Limitation 1: large number of sampling steps.
• Increasing step size η of the likelihood gradient
−η∇xt ∥y −A(x̂0(xt))∥22 does not help.

• The likelihood gradient is also expensive to compute due to
backpropagation.
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Limitations of DPS

• Limitation 2: Inconsistent reconstructions.

• Limitation 3: Difficult to adapt to latent diffusion.
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Our Method: Decoupled Data Consistency

Consider the regularized optimization formulation:

min
x

1

2
||A(x)− y||22 + λR(x)

Question: How do we better utilize the diffusion model as the data
prior?

• Introducing an auxiliary variable v:

min
x,v

1

2
||A(x)− y||22 + λR(v), s.t. x = v

• Applying half quadratic splitting (HQS):

min
x,v

1

2
||A(x)− y||22 + µ||x− v||22 + λR(v)
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Decouple the Diffusion Prior from Data Consistency

Alternating minimization between x and v for solving

min
x,v

1

2
||A(x)− y||22 + µ||x− v||22 + λR(v)

• Data consistency optimization via gradient descent:

xk = argmin
x

1

2
||A(x)− y||22 + µ||x− vk−1||22

• Enforcing image prior (through diffusion models):

vk = argmin
vk

µ||xk − v||22 + λR(v)
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Decouple the Diffusion Prior from Data Consistency

Decoupling via variable splitting and alternating minimization:

• Data consistency optimization via gradient descent:

xk = argmin
x

1

2
||A(x)− y||22 + µ||x− vk−1||22

• Enforcing image prior (through diffusion models):

vk = argmin
vk

µ||xk − v||22 + λR(v)
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Step I: Data Consistency Optimization

• Data fidelity optimization. Generate measurement-consistent
reconstructions (suffer from artifacts):

xk = argmin
x

1

2
||A(x)− y||22 + µ||x− vk−1||22,

which can be solved via gradient descent.

18



Step II: Enforcing Image Prior via Diffusion Purification

Question: Can we refine xk with pre-trained diffusion models?

Solution: Diffusion purification2 by adding noise and then denoising

• Run forward process to a certain intermediate noise level t∗.

xk,t∗ = xk + σt∗ϵ,

• Run the reverse sampling process from xk,t⋆ to obtain vk.

2Nie et al. Diffusion Models for Adversarial Purification, 2022.
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Step II: Enforcing Image Prior via Diffusion Purification

Initial
Reconstruction

Submerging Artifacts
W ith Noise

Purified
Reconstruction

Forward
Process

Reverse
Process

• Effectiveness: With a properly chosen t⋆, the image artifacts
can be effectively removed while the overall image structures
are preserved.

• Efficiency: Diffusion purification can be efficiently implemented
through fast samplers, such as DDIM and consistency models. It
can also be easily adapted to the latent space.
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Decoupled Data Consistency via Diffusion Purification (DCDP)

Data Fidelity
Optimization

𝑣0 = 𝟎

Diffusion Purification

Initial reconstruction with artifacts Diffusion stage up to

Incorporating diffusion model prior

Output 
reconstructed 

image

.  .  .

.  .  .
Perform

times

• Step I: Enforcing data consistency:

xk = argmin
x

1

2
||A(x)− y||22 + µ||x− vk−1||22

• Step II: Applying diffusion purification:

vk = DPUR(xk, t
∗
k)
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Decoupled Data Consistency via Diffusion Purification (DCDP)

• Enforcing data consistency:

xk = argmin
x

1

2
||A(x)− y||22 + µ||x− vk−1||22

• Applying diffusion purification:

vk = DPUR(xk, t
∗
k)
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Decoupled Data Consistency via Diffusion Purification (DCDP)

• Enforcing data consistency:

xk = argmin
x

1

2
||A(x)− y||22 + µ||x− vk−1||22

• Applying diffusion purification:

vk = DPUR(xk, t
∗
k)

Use a decaying purification strength t⋆k across iteration k for
stable convergence.
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Effectiveness of Diffusion Purification

• Effectiveness: Diffusion Purification is effective for various
inverse problems.
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Efficiency of Diffusion Purification via DDIM

Figure 2: DPS: insufficient sampling Steps leads to inconsistent samples

Figure 3: DCDP: Fast diffusion purification via DDIM.
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Figure 3: DCDP: Fast diffusion purification via DDIM.

25



Efficiency of Diffusion Purification via Consistency Models

• Diffusion Purification can efficiently be performed using
Consistency Models (one step).
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Improved Data Consistency via DCDP

• DCDP is more data consistent with the measurements.
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Competitive Performance in the Latent Space

28



Competitive Performance: Quantitative Comparison
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Discussion

• Diffusion models can serve as an implicit regularization
for solving ill-posed inverse problems.

• Decoupling the data consistency can significantly
improve the efficiency and flexibility.

• Limitation: Perception-distortion tradeoff (a potential
direction to explore)

1. Xiang Li, Soo Min Kwon, Ismail R. Alkhouri, Saiprasad Ravishankar, Qing
Qu. Decoupled Data Consistency with Diffusion Purification for Image
Restoration. Under Review at IEEE Journal of Selected Topics in Signal
Processing (JSTSP), 2025.
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Data Assimilation



Background: Data Assimilation

• Stochastic dynamic systems:

xk = Ψ(xk−1)
transition map

+ ξk−1
stochastic force

• (Partial) nosiy observation models:

yk = A(xk)
partial observation

+ ηk
31



Background: Data Assimilation

Earthquake Prediction Weather Forecasting
‘

Hurricane Prediction

Data Assimilation (DA): combine observations yk with numeri-
cal models to predict statesxk in stochastic dynamic systems.

xk = Ψ(xk−1)
transition map

+ ξk−1
stochastic force

,

yk = A(xk)
partial observation

+ ηk.
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Classical Approaches for DA

Model-based methods (require state transition model Ψ):

• Kalman filter: assumption of Gaussian noise and linear
dynamics

xk = Axk−1 +Buk−1 +wk−1

x̂k|k = x̂k|k−1 +Kk

(
zk −Hx̂k|k−1

)

• Particle filter: curse of dimensionality, computationally too
expensive in high-dimension

xi
k = Ψ(xi

(k−1)) + ξik

x̂k =

N∑
i=1

ωi
kx

i
k, ωi

k ∝ p(yk | xi
k)
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Data-driven Methods for DA

Data-driven methods:

• Score-based diffusion models (SDA): learn joint distribution
p(xk−τ , , · · · ,xk, · · · ,xk+τ | yk+τ ) of state priors
(non-autoregressive)

• Our Method: FlowDAS explicitly models system transition
dynamics p(xk | xk−1,yk) (autoregressive)

34
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FlowDAS: A Flow-Based Framework for Data Assimilation

Goal: Given the state variable xk−1 ∼ p(xk−1) at k, estimate
q(xk | xk−1,yk)

• Learning a predictor: estimate x′
k ∼ πθ(x

′
k | xk−1) via

stochastic interpolant (SI).3

• Correction using partial observation: leverage yk to estimate
q(xk | x′

k,yk) inspired by denoising posterior sampling (DPS)4.
• Autoregressive: estimate xk+1 ∼ q(xk+1 | xk,yk+1) and repeat.

3M. S. Albergo et al., Stochastic Interpolants: A Unifying Framework for Flows and
Diffusions.
4H. Chung et al., Diffusion Posterior Sampling for General Noisy Inverse Problems
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Stochastic Interpolants (SI) for Probabilistic Forecasting

Consider a stochastic process Xs defined over the interval s ∈ [0, 1],
evolving from initial state X0 to X1. The SI can be described as

Xs = αsX0 + βsX1 + σsWs

where αs, βs, σs are drift coefficients, and Ws is a Wiener process.

• Let bs(Xs,X0) be the “velocity” of the interpolant path, then
Xs follows the SDE

dXs = bs(Xs,X0) ds+ σs dWs,

• The drift (velocity) term bs(Xs,X0) can be learned through

Lb(b̂s) =

∫ 1

0

E
[
∥b̂s(Xs,X0)−Rs∥2

]
ds.

where Rs = α̇sX0 + β̇sX1 + σ̇sWs.
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Observation Consistent Prediction

To ensure measurement consistency y = A(x), FlowDAS augments
the original drift bs(Xs,X0) via Bayes’ rule

bs(Xs,y,X0) = bs(Xs,X0) +
∇ log p(y | Xs,X0)

λsβs
.

• The conditional score ∇ log p(y | Xs,X0) captures the
observation information, but intractable.

• In practice, we estimate it by Monte-Carlo marginalization and
do Monte Carlo sampling during inference.
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FlowDAS: A Flow-Based Framework for Data Assimilation

• Physics aligned transport: directly learns transition between
adjacent states, enabling faster inference and stable training

• Observation-consistency: learns the full conditional
distribution, with no post-hoc update needed

40



Low-dimensional Problem: Lorenz 1963

• Stuyd the 3D Lorenz 1963
tracking problem, with
x(t) = (x1(t), x2(t), x3(t)).

• System dynamics:

dx1

dt
= µ(x2 − x1) + ξ1

dx2

dt
= x1(ρ− x3)− x2 + ξ2

dx3

dt
= x1x2 − τx3 + ξ3

• Observation model:

y = arctan(x1) + η

41



Solving Navier-Stokes (NS) Equation

322 → 1282 162 → 1282 5% 1.5625%

FlowDAS 0.038 0.067 0.071 0.123
FNO-DA 0.158 0.166 0.165 0.183
Transolver-DA 0.159 0.176 0.161 0.180
SDA 0.073 0.133 0.251 0.258

• Consider the incompressible fiuld flow governed by 2D NS
equations. Let x = ω to be the vorticity field.

• State transition dynamics:

dω + v · ∇ω dt = ν∆ω dt− αω dt+ ϵdξ.

• Observation model: y = A(ω) + η, where A could be
downsampling operator or random mask.

42
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Solving Navier-Stokes (NS) Equation

• State transition dynamics:

dω + v · ∇ω dt = ν∆ω dt− αω dt+ ϵdξ.

• Observation model: y = A(ω) + η, where A could be
downsampling operator or random mask.
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Application I: Weather Forecasting on SEVIR Dataset

• Storm Event ImageRy (SEVIR) is a spatiotemporal Earth
observation dataset which consists of 384 km × 384 km image
sequences spanning over 4 hours.

• Task: predict the future Vertically Integrated Liquid (VIL) given
of pervious context VIL and some sparse observation (10%)

44
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Application I: Weather Forecasting on SEVIR Dataset

Method RMSE ↓ CSI(τ20) (0.3) ↑ CSI(τ40) (0.5) ↑

Transolver-DA 0.062±0.001 0.663±0.001 0.499±0.002
FNO-DA 0.064±0.001 0.641±0.001 0.493±0.002
SDA 0.071±0.007 0.549±0.033 0.387±0.065
FlowDAS 0.053±0.004 0.746±0.022 0.614±0.044

• Storm Event ImageRy (SEVIR) is a spatiotemporal Earth
observation dataset which consists of 384 km × 384 km image
sequences spanning over 4 hours.

• Task: predict the future Vertically Integrated Liquid (VIL) given
of pervious context VIL and some sparse observation (10%)
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Application II: Particle Image Velocimetry (PIV)

• For many scientific applications, PIV aims at measuring dense
vorticity fields from sparse velocity measurements.

• Here, the fluid flow is seeded with tracer particles are captured
by a camera to derive the sparse velocity field. 46



Application II: Particle Image Velocimetry (PIV)

• For many scientific applications, PIV aims at measuring dense
vorticity fields from sparse velocity measurements.

• Here, the fluid flow is seeded with tracer particles, which are
captured by a camera to derive the sparse velocity field.
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Discussion

• Method: We introduce FlowDAS, a flow-based
autoregressive method for solving the data assimilation
problem with many scientific applications.

• Significance: the first DA framework built on stochastic
interpolants that learns step-to-step state transitions
and conditions on observations during rollout.

• Future directions: multimodality and multiphyics,
long-term prediction, efficiency, and robustness.

2. Siyi Chen*, Yixuan Jia*, Qing Qu, He Sun, Jeffrey Fessler. FlowDAS: A
Stochastic Interpolant-based Framework for Data Assimilation. Neural
Information Processing Systems (NeurIPS’25), 2025.
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Take-Home Message

• Solving image reconstruction problems: We developed
an efficient method for solving image inverse problems
through decoupling via diffusion purification.

• Data assimilation: We explored stochastic interpolant
methods for data assimilation in scientific applications,
by better modeling the underlying physics.
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