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We focus on the mathematical foundations of diffusion models
through low-dim structures and their scientific applications:

+ Introduction of Diffusion Models
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« Lecture Ill: From Theory to Scientific Applications
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Training with Synthetic Data &
Model Collapse




Modern Generative Al - Diffusion Models

Forward Diffusion Process

Generative Reverse Denoising Process

Diffusion models can generate high-quality images that are
indistinguishable from real ones, even to humans.



Self-consuming Loop for Training GenAl Models

o Diffusion
Training Models Inference

Training Generated
data data
Contaminate

Al-generated data is mixed into the training dataset for training the
next-iteration model.



Model Collapse

(Glbney et aI '24, Nature News) (Gerstgrasser et al. ’24 COLM)

+ Model Collapse: Model performance degrades over iterations’.
Prior studies have shown that:

1An iteration denotes a complete training and sampling cycle, not a single gradient
update during training.
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+ Model Collapse: Model performance degrades over iterations’.
Prior studies have shown that:

+ The visual quality of the generated images deteriorates. (FID 1)

1An iteration denotes a complete training and sampling cycle, not a single gradient
update during training.
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+ Model Collapse: Model performance degrades over iterations’.
Prior studies have shown that:
« The visual quality of the generated images deteriorates. (FID 1)
+ The test loss increases. (loss 1)

Theorem 2. For an n-fold synthetic data generation process with T > d + 2 samples per iteration

2 N def L 3 ” "
and isotropic features (£ < 1), the test error for the ridgeless linear predictor @, learned on the
accumulated data up to iteration n s given by:

s 2 U] >2d i
E{};;""‘(w,.):m Y5 < T—a-1% € 3)

i
i=1

1An iteration denotes a complete training and sampling cycle, not a single gradient
update during training.
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+ Model Collapse: Model performance degrades over iterations’.
Prior studies have shown that:

+ The visual quality of the generated images deteriorates. (FID 1)
+ The test loss increases. (loss 1)
+ The variance of the generated images decreases. (¢ — 0)

Under the above data-model feedback loop, Shumailov et al. (2024) prove that

D 0 EWIW (G S ) N (1@, 5O))] 5 scast 500, @)

Replace Replace)»

1An iteration denotes a complete training and sampling cycle, not a single gradient
update during training.



Model Collapse
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+ Model Collapse: Model performance degrades over iterations’.
Prior studies have shown that:
« The visual quality of the generated images deteriorates. (FID 1)
+ The test loss increases. (loss 1)
+ The variance of the generated images decreases. (o — 0)

We reveal a generalization-to-memorization transition in
model collapse, inspiring new mitigation strategies.

1An iteration denotes a complete training and sampling cycle, not a single gradient
update during training. 7



Generalization to Memorization Transition

Generalization Score: the average distance between each generated
image x in G,, and its nearest image z in the training dataset D,,:
AR 1 .
GS(n) £ Dist(D,,,Gp) = — min x(x, z),

|Qn\ wcs, z€D,

where (-, -) : R? x RY — R denotes a distance metric.



Generalization to Memorization Transition
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Generalization Score: the average distance between each generated
image x in G,, and its nearest image z in the training dataset D,,:

. 1
GS(TL) £ DISt(D7lagTI,) = 75 min n(m,z),
|gn‘ 2EG, z€D,

where (-, -) : R? x RY — R denotes a distance metric.



Why does the Transition Occur?

Our Hypothesis

With a fixed sample size, information (measured by entropy) of
the dataset falls over training loops, leading to memorization.

2Leonenko Kozachenko. Sample estimate of the entropy of a random vector.
Problems of Information Transmission.



Why does the Transition Occur?

Our Hypothesis

With a fixed sample size, information (measured by entropy) of
the dataset falls over training loops, leading to memorization.

We adopt the Kozachenko-Leonenko (KL) estimator? to empirically
estimate the entropy of a training dataset D as

N d
H,(D) = 4(|D|) — ¢(v) + logea + ﬁ Z loge, (),
xcD
where ¢ : N — R is the digamma function; ¢; denotes the volume of
the unit ball in the d-dimensional space; and ¢, (z) = k(x, =)
represents the y-nearest neighbor distance.

2Leonenko Kozachenko. Sample estimate of the entropy of a random vector.
Problems of Information Transmission.



opy of the Training Datasets
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Left: Entropy of training data over self-consuming iterations under
different data sizes. (Experiments conducted on Cifar-10 using
DDPM)

Middle and Right: PCA visualization of data before and after
collapse.
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The Relation Betwee

opy and Generalization Score
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(a) Generalization score vs. estimated
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(b) Generalization score vs. trace of
covariance.

+ All the points in (a) align well on a single line.
+ The Generalization score shows only a weak, size-dependent

correlation with variance.

« Entropy is therefore the more robust indicator.

"



Mitigating Collapse via Entropy-Based Sample Selection

Intuition. Given a candidate pool S, consisting of both real and
previously Al-generated images, choose a subset D c S of size N
that maximizes training-set entropy:

max log min (x
DCS, |D|=N Z UE’D\{w} V)

H.(D)
- Yields a diverse, high-entropy training set for next-generation

models.
- Difficult to optimize globally; requires approximation methods.

12



Mitigating Collapse via Entropy-Based Sample Selection

Algorithm I: Greedy Selection

1. Initialization: randomly pick o € S and set D « {z}.
2. Iterative step (Terminate at |D| = N):

Tge] = argmax [min k(x, y)} , D+ DU{xsq}-
xzeS\D yeD

Algorithm II: Threshold Decay Filter

This method extends greedy selection by introducing an additional
hyperparameter that controls the degree of greediness.

13



Two Different Paradigms of Self-consuming Training Loops

Replace Paradigm Accumulate-subsample Paradigm
Generated Data Previously
Gp-1 Generated Data
Real Data {Gi}i=1,.n—1

Training Data
Dy

Training Data
Dy

Our experiments are conducted under two distinct paradigms
explored in prior studies.

14



Results: Generalization Score & FID
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(b) FID over iterations

Entropy-based selection methods help preserve generalization

performance and mitigate the rise in FID.
15



Analysis for the Improvement
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(b) Data composition over iterations

Through Greedy selection strategy, we maximize the entropy and
observe a preference for selecting real data (blue) over synthetic
data (others).
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(a) Unconditional

Maintain both quality and diversity!

Visually ambiguous!

Looks better, but lacks diversity.
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Training Under More Realistic Settings

A more realistic setting where fresh real images are incorporated
into each iteration.

Original Generated

Data ploscle Data

Fresh Real
Data

Model B

Model C

Data Pool

Greedy Selection



Training Under More Realistic Settings

A more realistic setting where fresh real images are incorporated
into each iteration.

Original Generated

Data ploscle Data

Fresh Real
Data

Model A B C
FID 28.0 30.8 275

Model B

Data Pool Model C

Greedy Selection

The method can outperform the original model trained on the
original real images.



« Diffusion models collapse from generalization to
memorization in the self-consuming loop.

+ The entropy of the training dataset can serve as a robust
predictor of memorization.

+ Through the entropy-based selection methods, we
mitigate the memorization issue and slow down the
quality degradation.

19



s D

« Diffusion models collapse from generalization to
memorization in the self-consuming loop.

+ The entropy of the training dataset can serve as a robust
predictor of memorization.

+ Through the entropy-based selection methods, we
mitigate the memorization issue and slow down the
quality degradation.

From this perspective, many questions need to be addressed:

« What caused the entropy of the dataset to decrease? (sampling
or architecture bias?)
« Theoretically, how can we characterize the decaying rate based
on simplified models?
+ How can we further design methods for mitigating model
collapse? 9



- Diffusion models collapse from generalization to
memorization in the self-consuming loop.

+ The entropy of the training dataset can serve as a robust
predictor of memorization.

+ Through the entropy-based selection methods, we
mitigate the memorization issue and slow down the
quality degradation.

1. Lianghe Shi, Meng Wu, Huijie Zhang, Zekai Zhang, Molei Tao, Qing Qu. A
Closer Look at Model Collapse: From a Generalization-to-Memorization
Perspective. Neural Information Processing Systems (NeurlPS’25), 2025.
(spotlight, top 3.2%)

20



Low-Rank Image Editing &
Watermarking




Controlled Generation is Challenging

@ ation (b) Spatial Control
Pose

===== Mask

« Text prompt control is mostly global, they are not precise and
they cannot do local editing.

+ ControlNet is expensive and it relies on an extra neural
network.

+ Most methods remain heuristic and they lack interpretability.

21



LOw-rank COntrollable Image Editing (LOCO Edit)

AhA

Hair amount Eye shape

Hair curvature

(a) Precise and Localized

Mouth shape

22



LOw-rank COntrollable Image Editing (LOCO Edit)

| €166 EEES

Hair amount Eye shape

Mouth shape Hair curvature

(a) Precise and Localized

o Original (t = 0.5) -----------~ Transfer (t = 0.8)
(b) Homogeneity & Transferability

22



LOw-rank COntrollable Image Editing (LOCO Edit)

’i\ iz ‘Z\ | |
3 A 4 $ $ i |
A Ne & & e Ve ¥
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Mouth shape Hair curvature Hair amount Eye shape

(a) Precise and Localized

Transfer (other) o Original (t = 0.5) -----------~ Transfer (t = 0.8)
(b) Homogeneity & Transferability

real —eyesize + smile real + smile — hair color Open mouth Close mouth

(c) Composability & Disentanglement (d) Linearity

22



Editing in Text-to-image Diffusion Models

Stable Diffusion DeepFloyd Latent Consistency

mask Remove beard mask Side view

(a) Unsupervised T2I Edit

mask + “glasses” mask + “glasses” mask + “curly hair”
(b) Text-supervised T21 Edit

Figure 5: T-LOCO Edit on T2l diffusion models.

23



How does LOCO Edit Work?

Consider a unconditional diffusion model sgp:
« Posterior mean predictor (PMP) for the image z:

x: + (1 — ay) sg(@xs,t
zos(ant) = DT 0@ g,

Jar

24



How does LOCO Edit Work?

Consider a unconditional diffusion model sgp:
« Posterior mean predictor (PMP) for the image z:

x + (1 — oy) sg(xe, 1)

Jar

xo (T4 t) = ~ Elxo|z,),

« The 1st order Taylor expansion of zg ;(z; + AAz) at x;:

’ lo(zi; NA) = x4(4) + N1 (2) - Ax, ‘

where Jg 1 (x;) = Vg, xe () is the Jacobian of xg ;(x;)

24



Inductive Bias Towards “Simple” Soluti

-4- CIFAR-10-DDPM =+ CelebA-U-ViT DeepFloyd-IF-Prompt-1 ==~ ImageNet-U-ViT
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(a) Low-rankness of the Jacobian (b) Local linearity of PMP

The trained network via Adam tends to have simple structures:
+ Low-rankness of the Jacobian Jg ;(x:) = Vg, xe +(x:):
Jg7t(a}t) = UEUT = 230'7'1141'1111T
1=1
+ Local linearity of the DAE:
wgyt($t + )\Am) =~ :1:97t(33t) + )\ngt($t) . Am

3X. Li, Y. Dai, Q. Qu. Understanding Generalizability of Diffusion Models Requires
Rethinking the Hidden Gaussian Structure. NeurIPS, 202.
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How does LOCO Edit Work?

-4- CIFAR-10-DDPM === CelebA-U-ViT DeepFloyd-IF-Prompt-1 ==~ ImageNet-U-ViT
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(a) Low-rankness of the Jacobian (b) Local linearity of PMP

Two key properties:
« Local linearity of the PMP zg ,(z;) ~ lg(x:; \Ax).
» Low-rankness of the Jacobian

Joi(z:) =UEVT =37 ouv];

26



How does LOCO Edit Work?

Jo(xi) = Usv' = Z o,

+ Local linearity of the PMP with Az = v;, one column of V:
xo (T + Avi) = xo 1 (T1) + Ao 1 (T4) Vi
=xg,(x1) + /\ZJJuJ'v v;

j=1

= C%()’t + )\O’iui.

27



How does LOCO Edit Work?

Jo(xi) = Usv' = Z o,

+ Local linearity of the PMP with Az = v;, one column of V:
xo (T + Avi) = xo 1 (T1) + Ao 1 (T4) Vi
=xg,(x1) + /\Zajuj'v v;

j=1

= C%()’t + )\O’iui.

« Low rankness of the Jacobian Jy ;(x;) (e.g.,, t = 0.7):
« V can be computed efficiently via generalized power method!

27



Overview of LOCO Edit

« Illustration of LOCO Edit for unconditional diffusion models:

null( Jg,
N a
Jo,
' oo ”P DDIM
i+ v,
o0
Jo. ®v

c range( I

@y = Projucry

DDIM-Inv

Find v

28



Overview of LOCO Edit

« Illustration of LOCO Edit for unconditional diffusion models:

DDIM-Inv _ null(JTgz)
> Ty
/( v
I’ DDIM
o /\vl ~@

Zo fe.;,"
@ € range(

@vp = Projuuns,,)

Find v

« Visualizing editing directions identified via LOCO Edit:

Eye Lip Eyebrow Nose Dog ear Dog mouth

-~ (
b

28



Visual Comparison with Existing Methods

Origin NoiseCLR Asyrp  BlendedDiffusion LOCO (Ours)
- - 2 4 y i -

Add red lipstick
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Shallow Diffuse: Robust and Invisible Watermarking

‘_ Watermark I~ Watermark I | Watermark I~ Watermark I Watermark I Watermark 11 i
Tree-Ring Watermarks RingID Shallow Diffuse (Ours) ;

Generative reverse denoising process
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Shallow Diffuse: Robust and Invisible Watermarking

Watermark I Watermark 11 Watermark I Watermark 11
RingID Shallow Diffuse (Ours)

y ¥
zV =z + \Az | Jou(z) - Az
~0

Data Noise

Generative reverse denoising process
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Shallow Diffuse: Robust and Invisible Watermarking

Generative reverse denoi

process

Key idea: Inject the watermark Az in the Null Space of Jy ;(z;):

330,15(

w
Ly

) = To,(T1) +

)\Jg’t (wt) . Aac

~0

~ we,t(iﬂt)
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Shallow Diffuse: Comparison

Original

Watermark I Watermark 11 i
Image

Watermark [T
Tree-Ring Watermarks

gD

-~ Tree-Ring Watermarks --=~- Shallow Diffuse -¥%- RinglD
1.0 .-wey 1.0 oo -aay 1.0 1 gu-oe
M ™ V| r
o % - \ * Y ‘ *
a 08 t Lt 0.8] Wy !& toost! ; v¥
A 1 1
2 B i 1
* \ *
o061 | \ 0.6 : i 061 T
o 1 A | ! H ]
&l \ Voo
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4 N | ‘ o
* * *
30 35 40 45 0.6 0.8 1.0 0.0 0.2 0.4
PSNR? SSIM7 LPIPS)
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Shallow Diffuse: Comparison

Generation Consistency ‘Watermark Robustness
Method (AUC 1/TPR@ 1%FPR?T)
PSNR+ SSIMt LPIPS] | Clean Distortion Regeneration Adversarial Average
[ SDwio WM 32.28 0.78 0.06 - - - - -
DwtDct 37.88 097 0.02 0.83 0.54 0.00 0.82 036
DwtDctSvd 38.06 0.98 0.02 1.00 0.76 0.06 0.00 0.38
© | RivaGAN 40.57 0.98 0.04 1.00 0.93 0.05 1.00 0.59
8 Stegastamp 31.88 0.86 0.08 1.00 0.97 0.47 0.26 0.68
© [ Gaussian Shading 10.17 0.23 0.65 1.00 0.99 1.00 0.47 0.92
Tree-Ring 28.22 0.57 041 1.00 0.90 0.95 031 0.84
RingID 12.21 0.38 0.58 1 0.98 1.00 0.79 0.96
| Shallow Diffuse 3211 0.84 0.05 1. 1.00 0.96 0.62 0.93
~ [ SDwlo WM 3342 035 0.03 - - - - -

S DwtDct 37.77 0.96 0.02 0.76 0.34 0.01 0.78 0.27
g DwtDctSvd 37.84 0.97 0.02 1.00 0.74 0.04 0.00 0.36
‘% | RivaGAN 40.6 0.98 0.04 0.98 0.88 0.04 0.98 0.56
& | St p 32.03 0.85 0.08 1.00 0.96 0.46 0.26 0.67
A | Gaussian Shading 10.61 0.27 0.63 1.00 0.99 1.00 0.46 092
Tree-Ring 283 0.62 0.29 1.00 0.81 0.87 0.26 0.76
RingID 1253 045 053 | 1.00 0.99 1.00 079 0.97
[Shallow Diffuse | 33.07  0.89 003 | 100 1.00 093 0.59 092
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« Training diffusion models exhibits implicit bias towards
low-dimensional structures (low-rank Jacobian and
linearity).

« We can leverage the benign structures to manipulate the
generation and protect the copyright in principled
manners.

35
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=

« Training diffusion models exhibits implicit bias towards
low-dimensional structures (low-rank Jacobian and
linearity).

« We can leverage the benign structures to manipulate the
generation and protect the copyright in principled
manners.

2. Siyi Chen* Huijie Zhang* Minzhe Guo, Yifu Lu, Peng Wang, Qing Qu.
Exploring Low-Dimensional Subspaces in Diffusion Models for
Controllable Image Editing. Neural Information Processing Systems
(NeurlPS’24), 2024,.

3. Wenda Li, Huijie Zhang, Qing Qu. Shallow Diffuse: Robust and Invisible
Watermarking through Low-Dimensional Subspaces in Diffusion
Models. NeurlIPS, 2025 (spotlight, top 3.2 %).
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Understanding Classifier-Free
Guidance (CFG)




Conditional Generation and Classifier Guidance

« In practice, we often want to generate specific types of images
(e.g., “adog,” “a cat”).
« To achieve this, we have to sample using a conditional score

Viegp(z: | c) = Vliogp(xz:) + Vp(e|x:)

conditional score unconditional score classifier score

so that the denoising process can be conditioned on the input ¢
(e.g., a class label, a text prompt, an image embedding).

36



Conditional Generation and Classifier Guidance

« In practice, we often want to generate specific types of images
(e.g., “adog,” “a cat”).
« To achieve this, we have to sample using a conditional score

Viegp(z: | c) = Vliogp(xz:) + Vp(e|x:)

conditional score unconditional score classifier score

so that the denoising process can be conditioned on the input ¢
(e.g., a class label, a text prompt, an image embedding).

« Classifier guidance achieve this by training a separate classifier
to approximate p(c | ;) across noise levels t.

36



Classifier Guidance vs. Classifier Free Guidance

Class: mushroom

cheeseburg coffee mug

Classifier
Guidance

CFG

« Classifier guidance: low-quality with similar patterns;

37



Classifier Guidance vs. Classifier Free Guidance

Class: mushroom

cheeseburg coffee mug

Classifier
Guidance

CFG

« Classifier guidance: low-quality with similar patterns;
+ CFG: Significantly improved visual quality and distinctiveness.

37



Classifier Free Guidance (CFG)

The CFG operates by conditional sampling from

V log pere (4 | C)

= Vliogp(x: | 0) ++' (Viegp(z: | ¢) — Viogp(x: | 0))
= Vliogp(x: | c) + (v — 1) (Vlogp(z: | ¢) — Viogp(z, | 0))
——

Y g(z¢,c)

38



Classifier Free Guidance (CFG)

The CFG operates by conditional sampling from

Vlogpcp(;(azt | C)
= Vliogp(x: | 0) ++' (Viegp(z: | ¢) — Viogp(x: | 0))
= Vliogp(x: | c) + (v — 1) (Vlogp(z: | ¢) — Viogp(z, | 0))
——

Y g(z¢,c)

« Essentially, g(x;, ¢) = Vlogp(c | =;), where conditional
log p(z; | ¢) and unconditional Vlog p(x; | 0) are trained jointly.
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Classifier Free Guidance (CFG)

The CFG operates by conditional sampling from

Vlogpcp(;(ast | C)
= Vliogp(x: | 0) ++' (Viegp(z: | ¢) — Viogp(x: | 0))
= Vliogp(x: | c) + (v — 1) (Vlogp(z: | ¢) — Viogp(z, | 0))
——

Y g(z¢,c)

« Essentially, g(x;, ¢) = Vlogp(c | =;), where conditional
log p(z; | ¢) and unconditional Vlog p(x; | 0) are trained jointly.

« We have Vlog pere(x; | ¢) = Vlogp(x, | ¢) only when v = 0.

« However, the guidance strength v > 0 is typically chosen to be
quite large (e.g., v € [5, 8]) for CFG to work.
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Studies of

FID vs CLIP Scores on 512x512 samples
cfg-scales: ['1.5', '2.0", '3.0', '4.0', '5.0', '6.0", '7.0", '8.0']

Bl— v1a
n| — vi2
— v13
S| — vid
o
=20
g
S
)
0 18
w
17
16

0230 0235 0240 0245 0250 0.255 0.260 0.265
CLIP Score (ViT-L/14)

Why does large + in CFG work really well in practice?
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Importance of Understanding CFG

— Latent Space — ) (Conditioning)
£
Text
= ( Denoising U-Net €g zr Represen
EoEsosocosoonoocs tations
: D Q Q| e L
x KV [T kv || kv
e S ey M |
Pixel Space 7
ixel Spa -, G
Tg |
I
denoising step crossattention switch skip connection ‘concat

CFG is the fundamental technique in modern text-to-image (T2I)
diffusion models in the latent space.
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hy does CFG Improve Sample Quality?

EDM Linear Gaussian Model
coffeemug golden retriever : coffee mug golden retriever

Class: mushroom _cheeseburger

Naive
conditional
samples

CFG Samples

« Why naive conditional sampling is subpar?
+ How CFG with large v improves image quality?
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hy does CFG Improve Sample Quality?

EDM Linear Gaussian Model

coffeemug__golden retriever

Class: mushroom _cheeseburger coffee mug

golden retriever

Naive
conditional
samples

CFG Samples

« Why naive conditional sampling is subpar?
+ How CFG with large v improves image quality?

We study these questions on linear diffusion models, capturing the
essential insights on real-world nonlinear models.
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Linear Models with Gaussian Data Assumption

Lemma (Linear Score with Gaussian Data) .

Assume the data po(x) is Gaussian with z ~ N (u, X), with the
mean p and the covariance ¥ = UAU . The optimal solution
of the score function V log p(x;) at time-step ¢ can be derived as

V log p(s:) = }(z B Y

where it = UAtUT with At = diag (M%Zv ) M)\_fﬁ-).
t t

\. J

With Tweedie's formula, we have the relationship:

me,t(th) — Tt

Viegp(z:) ~ o2
t



Class Condition Score and CFG

If we let the conditional and unconditional data distributions be
N(pe, %) and N (piye, o) with overlapping bases U, and U,

Vlog pere(z: | €) = Viogp(x; | €) + v - g(x4, €)

« Class condition score V log p(z; | c):

1 -
Viogp(zx; | c) = p(zcﬁt —I)(x; — pe)
t
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Class Condition Score and CFG

If we let the conditional and unconditional data distributions be
N(pe, %) and N (piye, o) with overlapping bases U, and U,

Vlog pere(z: | €) = Viogp(x; | €) + v - g(x4, €)

« Class condition score V log p(z; | c):

1 -
Viogp(zx; | c) = p(zat —I)(xy — pe)
t

« Classifier guidance only uses V log p(x: | ¢), which is shaped by
the covariance structure 3. (Principal Components).
« PCs of 3. do not necessarily capture class-specific patterns.
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Why Classifier Guidance Does Not Work
tree frog UeUyc My Uuct U2 Uyc2 U3 Uuca

0.984 0.989 0.985

green mamba UTU,. Uyer

0.994 0.990 0.914

« Sampling only with class condition score V log p(x; | ¢):

d 2
o;+XNi o
T = pe+ E (T — p)uc,
=1 0—% + /\1 o

+ PCs of 3. do not necessarily capture class-specific patterns.



Decomposition of CFG: Positive CPC

If we let (e, ) and N (e, o) be the data distributions of
conditional and unconditional data, then

Vlog pere(xt | €¢) = Viogp(x: | €) + v - g(xs, €)
g(xta C) - 71;os—CPC + 7;\Ieg—CPC + Eean—Shift

« The positive contrastive principal component (Pos-CPC):
1 A T
Tpos-cpc = ?VL,+AL,+Vt,+(wL — He);
t

where V; | is the eigenvector matrix of . ; — 3, ; with positive

eigenvalues A, ., such that v} ;3. v ; > v] Sy v .

* Tros-cpc @nhances components of x; — . that align with V; ...
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Decomposition of CFG: Negative CPC

If we let the conditional and unconditional data distributions be
N(pe, ) and N (prye, o) with overlapping bases U, and U,,.,

Viog pere(x: | €) = Viogp(a: | €) + v - g(xs, €)
g(mtac) - %os-CPC + 7;\Ieg—CPC + 71‘-’[ean—Shift

+ The negative contrastive principal component (Pos-CPC):
1 A T
ﬁeg—cpc = ?Vt,fAtﬁVtﬁ(wt - Hc)-
t

where V; _ is the eigenvectors of . ; — 3,,.; with negative
eigenvalues A, _, such that v’ ;3. ,v_; <v! Bycv_ ;.
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Decomposition of CFG: Negative CPC

If we let the conditional and unconditional data distributions be
N(pe, ) and N (prye, o) with overlapping bases U, and U,,.,

Viog pere(x: | €) = Viogp(a: | €) + v - g(xs, €)
g(mtac) - %os-CPC + 7;\Ieg—CPC + 71‘-’[ean—Shift

+ The negative contrastive principal component (Pos-CPC):
1 A T
ﬁeg—cpc = ?Vt,fAtﬁVtﬁ(wt - Hc)-
t

where V; _ is the eigenvectors of . ; — 3,,.; with negative
eigenvalues A, _, such that v’ ;3. ,v_; <v! Bycv_ ;.

* Treg-cec SUPPresses components of x; — p. that align with V; _.
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Decomposition of CFG: Mean-Shift

If we let the conditional and unconditional data distributions be
N(pe, ) and N (piye, o) with overlapping bases U, and U,

Vlog pere(x: | €) = Viogp(x; | €) + v - g(4, €)
g(x¢,¢) = Tros-cec + Tneg-chc + Tvean-snitt

+ The mean-shift component:

1 -
7;’[ean—Shift — ?(I - Zuc,t)(ﬂc - N’u,c) ~
t

(,Uf(: - Huc)

Q=

* Tuean-snizt 1S independent of z;, i.e., it adds a constant
perturbation to all trajectories, leading to low diversity.
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Decomposition of CFG: Mean-Shift

I = Zue) (e = Hue)

He — Huc o(t) =80.00 o(t) =42.415 o(t)=21.109 o) =9.723 () =4.066 o(t)=1.502 o(t) =0.470

+ The mean-shift component:
1 B

Thean-snift = 72(1— - Euc,t)(uc - Nuc) ~ lQ(Nc - Nuc)
O O

tench

tree fog

coffee
mug

* Tuean-snizt 1S independent of x, i.e., it adds a constant
perturbation to all trajectories, leading to low diversity.
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How Does CFG Lead to High Quality Samples?

Positive CPC Negative CPC Mean-Shift

Vlogpere(@t | €) = Vlogp(x: | €) + - g(xt, €)
g(x¢, ¢) = Tros-cpc + Tneg-cpc + Thean-snist
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Linear-to-Nonlinear Transition in Real-World Models

Linear Regime Class: cheeseburger Nonlinear regime
<

<
No guidance o(t) = 31.88

sy~ .‘,-,

(a) Effects of nonlinear CFG at individual timesteps

No guidance o(t) = 31.88 22.79 16.02 11.05 7.47 4.93 3.17

“ly

-~ Ay et ) — -

SN ,";—J_.._z./.,_s./.._s/___/ S5 N

(b) Effects of linear CFG at individual timestep

UTU(x))
N o(t) = 80.0 N 59.66 N 43.92 N 31.88 N 22.79 N 16.02 N 11.05 N 7.46 N 4.93 o 3.17 o 0.69

(c) Correlation matrix between the PCs (U) of data covariance and singular vectors of network Jacobians U, (x,)

Up(x) (43.9) Uy(x) (22.79) Uy(x) (16.02) Uy(xp) (7.47) Uy(xp) (3.17) Uy(xp) (1.19) Uy(xp) (0.69)
iaE ¢

(d) Evolution of singular vectors of network Jacobians U, (x,) across different noise levels a(t)
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Real-world Diffusion Models - Ablation Studies

Class: golden retriever a(t) € [11.05,80)
y=i7 r=9 y =10 1000

%0
IR IR AR
AN AN

U R

FDowov2

700

600

500

Key observations:

Class: golden retriever

==+ Baseline (no guidance)
—— CFG

—=— Linear CFG

—+— Mean-Shift Guidance
—« Positive CPC Guidance
—— Negative CPC Guidance

Tzl

W_

[ 5 0 15 20 25 By
Guidance Strength y

+ Mean-shift guidance dominates CFG’s effect (in linear regime).

+ CPC guidance could also lead to improved generation quality.
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Main takeaway:

+ The diffusion model by itself does not adequately model
the class-specific information.

« CFG identifies and enhances class-specific patterns.

4. Xiang Li, Rongrong Wang, Qing Qu. Towards Understanding the
Mechanisms of Classifier-Free Guidance. Neural Information
Processing Systems (NeurlPS’25), 2025. (spotlight, top 3.2%)
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Take-Home Message

« Training with Synthetic Data: suffer from model collapse
due to generalization-to-memorization transition, and
can be mitigated through effective data selection

+ Content Manipulation: we can leverage low-dimensional
subspaces to effectively manipulate the generation

« Classifier-free Guidance: we explained why CFG works
through contrastive subspaces.
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