

Harnessing Low-Dimensionality in Diffusion Models

Lecture II: Controllability & Training with Synthetic Data

Qing Qu

September 22, 2025

EECS, University of Michigan

Lecture Schedule

We focus on the **mathematical foundations** of diffusion models through **low-dim structures** and their scientific applications:

- Introduction of Diffusion Models
- Lecture I: Generalization of Learning Diffusion Models
- · Lecture II: Controllability of Diffusion Models
- Lecture III: From Theory to Scientific Applications

Major References

- Lianghe Shi, Meng Wu, Huijie Zhang, Zekai Zhang, Molei Tao, Qing Qu. A Closer Look at Model Collapse: From a Generalization-to-Memorization Perspective. Neural Information Processing Systems (NeurIPS'25), 2025. (spotlight, top 3.2%)
- Siyi Chen*, Huijie Zhang*, Minzhe Guo, Yifu Lu, Peng Wang, Qing Qu. Exploring Low-Dimensional Subspaces in Diffusion Models for Controllable Image Editing. Neural Information Processing Systems (NeurIPS'24), 2024.
- Wenda Li, Huijie Zhang, Qing Qu. Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models. NeurIPS, 2025 (spotlight, top 3.2 %).
- 4. Xiang Li, Rongrong Wang, Qing Qu. Towards Understanding the Mechanisms of Classifier-Free Guidance. Neural Information Processing Systems (NeurIPS'25), 2025. (spotlight, top 3.2%)

Outline

1. Training with Synthetic Data & Model Collapse

2. Low-Rank Image Editing & Watermarking

- 3. Understanding Classifier-Free Guidance (CFG)
- 4. Conclusion & Acknowledgement

Training with Synthetic Data & Model Collapse

Modern Generative AI - Diffusion Models

Diffusion models can generate high-quality images that are indistinguishable from real ones, even to humans.

Self-consuming Loop for Training GenAl Models

Al-generated data is mixed into the training dataset for training the next-iteration model.

(Gibney et al.'24, Nature News)

• Model Collapse: Model performance degrades over iterations¹. Prior studies have shown that:

¹An iteration denotes a complete training and sampling cycle, not a single gradient update during training.

(Gibney et al.'24, Nature News)

- Model Collapse: Model performance degrades over iterations¹. Prior studies have shown that:
 - The visual quality of the generated images deteriorates. (FID ↑)

¹An iteration denotes a complete training and sampling cycle, not a single gradient update during training.

(Gibney et al.'24, Nature News)

(Gerstgrasser et al.'24, COLM)

- Model Collapse: Model performance degrades over iterations¹.
 Prior studies have shown that:
 - The visual quality of the generated images deteriorates. (FID ↑)
 - The test loss increases. (loss ↑)

Theorem 2. For an n-fold synthetic data generation process with $T \ge d + 2$ samples per iteration and isotropic features $C \stackrel{d}{=} \{j_i\}$, the test error for the ridgeless linear predictor \hat{w}_n learned on the accumulated data up to iteration n is given by

$$E_{test}^{Accum}(\hat{w}_n) = \frac{\sigma^2 d}{T - d - 1} \left(\sum_{i=1}^n \frac{1}{i^2} \right) \le \frac{\sigma^2 d}{T - d - 1} \times \frac{\pi^2}{6}$$
 (3)

¹An iteration denotes a complete training and sampling cycle, not a single gradient update during training.

(Gibney et al.'24, Nature News)

(Gerstgrasser et al.'24, COLM)

- Model Collapse: Model performance degrades over iterations¹.
 Prior studies have shown that:
 - The **visual quality** of the generated images deteriorates. (FID \uparrow)
 - The **test loss** increases. ($loss \uparrow$)
 - The **variance** of the generated images decreases. ($\sigma \rightarrow 0$)

Under the above data-model feedback loop, Shumailov et al. (2024) prove that $\begin{array}{ccc} \Sigma_{(ch+1)}^{(c,t+1)} & \alpha_{ch}^{(c,t)} & 0 & ; & \mathbb{E}[\mathbb{W}_2^2(\mathcal{N}(R_c^{(ch+1)}, \mathcal{N}(\mu^{(ch)}, \Sigma^{(ch)}), \mathcal{N}(\mu^{(c)}, \Sigma^{(c)}))] \to \infty \text{ as } t \to \infty, \end{array} \tag{4}$

¹An iteration denotes a complete training and sampling cycle, not a single gradient update during training.

(Gibney et al.'24, Nature News)

(Gerstgrasser et al.'24, COLM)

- Model Collapse: Model performance degrades over iterations¹.
 Prior studies have shown that:
 - The **visual quality** of the generated images deteriorates. (FID \uparrow)
 - The **test loss** increases. ($loss \uparrow$)
 - The **variance** of the generated images decreases. ($\sigma \rightarrow 0$)

We reveal a **generalization-to-memorization transition** in model collapse, inspiring new mitigation strategies.

¹An iteration denotes a complete training and sampling cycle, not a single gradient update during training.

Generalization to Memorization Transition

Generalization Score: the average distance between each generated image x in \mathcal{G}_n and its nearest image z in the training dataset \mathcal{D}_n :

$$\mathsf{GS}(n) \triangleq \mathsf{Dist}(\mathcal{D}_n, \mathcal{G}_n) = \frac{1}{|\mathcal{G}_n|} \sum_{\boldsymbol{x} \in \mathcal{G}_n} \min_{\boldsymbol{z} \in \mathcal{D}_n} \kappa(\boldsymbol{x}, \boldsymbol{z}),$$

where $\kappa(\cdot,\cdot):\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$ denotes a distance metric.

Generalization to Memorization Transition

Generalization Score: the average distance between each generated image x in \mathcal{G}_n and its nearest image z in the training dataset \mathcal{D}_n :

$$\mathsf{GS}(n) \triangleq \mathsf{Dist}(\mathcal{D}_n, \mathcal{G}_n) = \frac{1}{|\mathcal{G}_n|} \sum_{\boldsymbol{x} \in \mathcal{G}_n} \min_{\boldsymbol{z} \in \mathcal{D}_n} \kappa(\boldsymbol{x}, \boldsymbol{z}),$$

where $\kappa(\cdot,\cdot):\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$ denotes a distance metric.

Why does the Transition Occur?

Our Hypothesis

With a fixed sample size, information (measured by **entropy**) of the dataset falls over training loops, leading to memorization.

²Leonenko Kozachenko. Sample estimate of the entropy of a random vector. Problems of Information Transmission.

Why does the Transition Occur?

Our Hypothesis

With a fixed sample size, information (measured by **entropy**) of the dataset falls over training loops, leading to memorization.

We adopt the Kozachenko-Leonenko (KL) estimator 2 to empirically estimate the entropy of a training dataset $\mathcal D$ as

$$\hat{H}_{\gamma}(\mathcal{D}) = \psi(|\mathcal{D}|) - \psi(\gamma) + \log c_d + \frac{d}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \log \varepsilon_{\gamma}(x),$$

where $\psi: \mathbb{N} \to \mathbb{R}$ is the digamma function; c_d denotes the volume of the unit ball in the d-dimensional space; and $\varepsilon_{\gamma}(x) = \kappa(x, x_{\gamma})$ represents the γ -nearest neighbor distance.

²Leonenko Kozachenko. Sample estimate of the entropy of a random vector. Problems of Information Transmission.

The Entropy of the Training Datasets

Left: Entropy of training data over self-consuming iterations under different data sizes. (Experiments conducted on Cifar-10 using DDPM)

Middle and Right: PCA visualization of data before and after collapse.

The Relation Between Entropy and Generalization Score

(a) Generalization score vs. estimated entropy.

(b) Generalization score vs. trace of covariance.

- All the points in (a) align well on a single line.
- The Generalization score shows only a weak, size-dependent correlation with variance.
- Entropy is therefore the more robust indicator.

Mitigating Collapse via Entropy-Based Sample Selection

Intuition. Given a candidate pool S, consisting of both real and previously AI-generated images, choose a subset $D \subset S$ of size N that **maximizes training-set entropy**:

$$\max_{\mathcal{D} \subset \mathcal{S}, \; |\mathcal{D}| = N} \; \underbrace{\sum_{\boldsymbol{x} \in \mathcal{D}} \log \min_{\boldsymbol{y} \in \mathcal{D} \setminus \{\boldsymbol{x}\}} \kappa(\boldsymbol{x}, \boldsymbol{y})}_{\hat{H}_1(\mathcal{D})}.$$

- Yields a diverse, high-entropy training set for next-generation models.
- Difficult to optimize globally; requires approximation methods.

Mitigating Collapse via Entropy-Based Sample Selection

Algorithm I: Greedy Selection

- 1. **Initialization**: randomly pick $x_0 \in \mathcal{S}$ and set $\mathcal{D} \leftarrow \{x_0\}$.
- **2. Iterative step** (Terminate at $|\mathcal{D}| = N$):

$$m{x}_{ ext{sel}} = rgmax_{m{x} \in \mathcal{S} \setminus \mathcal{D}} \ \left[\min_{m{y} \in \mathcal{D}} \kappa(m{x}, m{y})
ight], \qquad \mathcal{D} \leftarrow \mathcal{D} \cup \{m{x}_{ ext{sel}}\}.$$

Algorithm II: Threshold Decay Filter

This method extends greedy selection by introducing an additional hyperparameter that controls the degree of greediness.

Two Different Paradigms of Self-consuming Training Loops

Our experiments are conducted under two distinct paradigms explored in prior studies.

Results: Generalization Score & FID

(a) Generalization Score over iterations

(b) FID over iterations

Entropy-based selection methods help preserve generalization performance and mitigate the rise in **FID**.

Analysis for the Improvement

Through **Greedy selection** strategy, we maximize the entropy and

observe a preference for selecting real data (blue) over synthetic data (others).

Mitigating Diversity Collapse of Classifier Free Guidance

Comparison of MNIST generations with different methods:

Training Under More Realistic Settings

A more realistic setting where fresh real images are incorporated into each iteration.

Training Under More Realistic Settings

A more realistic setting where fresh real images are incorporated into each iteration.

Model	Α	В	С
FID	28.0	30.8	27.5

The method can outperform the original model trained on the original real images.

Summary

- Diffusion models collapse from generalization to memorization in the self-consuming loop.
- The entropy of the training dataset can serve as a robust predictor of memorization.
- Through the entropy-based selection methods, we mitigate the memorization issue and slow down the quality degradation.

Summary

- Diffusion models collapse from generalization to memorization in the self-consuming loop.
- The entropy of the training dataset can serve as a robust predictor of memorization.
- Through the entropy-based selection methods, we mitigate the memorization issue and slow down the quality degradation.

From this perspective, many questions need to be addressed:

- What caused the entropy of the dataset to decrease? (sampling or architecture bias?)
- Theoretically, how can we characterize the decaying rate based on simplified models?
- How can we further design methods for mitigating model collapse?

Summary

- Diffusion models collapse from generalization to memorization in the self-consuming loop.
- The entropy of the training dataset can serve as a robust predictor of memorization.
- Through the entropy-based selection methods, we mitigate the memorization issue and slow down the quality degradation.
- Lianghe Shi, Meng Wu, Huijie Zhang, Zekai Zhang, Molei Tao, Qing Qu. A Closer Look at Model Collapse: From a Generalization-to-Memorization Perspective. Neural Information Processing Systems (NeurIPS'25), 2025. (spotlight, top 3.2%)

Low-Rank Image Editing &

Watermarking

Controlled Generation is Challenging

- Text prompt control is mostly global, they are not precise and they cannot do local editing.
- ControlNet is expensive and it relies on an extra neural network.
- Most methods remain heuristic and they lack interpretability.

LOw-rank COntrollable Image Editing (LOCO Edit)

Eye shape

(a) Precise and Localized

LOw-rank COntrollable Image Editing (LOCO Edit)

(a) Precise and Localized

Original ----

-- Transfer (other)

(b) Homogeneity & Transferability

LOw-rank COntrollable Image Editing (LOCO Edit)

(a) Precise and Localized

Original -----

--- Transfer (other)

(b) Homogeneity & Transferability

- eve size + smile

real + smile - hair color

Close mouth

(c) Composability & Disentanglement

(d) Linearity

Editing in Text-to-image Diffusion Models

Figure 5: T-LOCO Edit on T2I diffusion models.

How does LOCO Edit Work?

Consider a unconditional diffusion model s_{θ} :

• Posterior mean predictor (PMP) for the image x_0 :

$$m{x}_{m{ heta},t}(m{x}_t;t) \coloneqq rac{m{x}_t + (1-lpha_t)\,m{s}_{m{ heta}}(m{x}_t,t)}{\sqrt{lpha_t}} pprox \mathbb{E}[m{x}_0|m{x}_t],$$

Consider a unconditional diffusion model s_{θ} :

• Posterior mean predictor (PMP) for the image x_0 :

$$oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t;t) \coloneqq rac{oldsymbol{x}_t + (1-lpha_t)\,oldsymbol{s}_{oldsymbol{ heta}}(oldsymbol{x}_t,t)}{\sqrt{lpha_t}} pprox \mathbb{E}[oldsymbol{x}_0|oldsymbol{x}_t],$$

• The 1st order Taylor expansion of $m{x}_{m{ heta},t}(m{x}_t + \lambda \Delta m{x})$ at $m{x}_t$:

$$l_{m{ heta}}(m{x}_t; \lambda \Delta m{x}) \; := \; m{x}_{m{ heta},t}(m{x}_t) + \lambda m{J}_{m{ heta},t}(m{x}_t) \cdot \Delta m{x},$$

where $J_{m{ heta},t}(m{x}_t) =
abla_{m{x}_t}m{x}_{m{ heta},t}(m{x}_t)$ is the Jacobian of $m{x}_{m{ heta},t}(m{x}_t)$

Inductive Bias Towards "Simple" Solutions³

The trained network via Adam tends to have simple structures:

• Low-rankness of the Jacobian $J_{\theta,t}(x_t) = \nabla_{x_t} x_{\theta,t}(x_t)$:

$$oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{U}^ op = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{u}_i^ op.$$

Local linearity of the DAE:

$$oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t + \lambda \Delta oldsymbol{x}) pprox oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + \lambda oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) \cdot \Delta oldsymbol{x}$$

³X. Li, Y. Dai, Q. Qu. Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure. *NeurIPS*, 2024.

Two key properties:

- Local linearity of the PMP $x_{m{ heta},t}(x_t)pprox l_{m{ heta}}(x_t;\lambda\Delta x)$.
- Low-rankness of the Jacobian $J_{ heta,t}(x_t) = U\Sigma V^ op = \sum_{i=1}^r \sigma_i u_i v_i^ op;$

$$oldsymbol{J_{oldsymbol{ heta},t}}(oldsymbol{x}_t) = oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^ op = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^ op$$

• Local linearity of the PMP with $\Delta x = v_i$, one column of V:

$$egin{aligned} m{x}_{m{ heta},t}(m{x}_t + \lambda m{v}_i) &pprox m{x}_{m{ heta},t}(m{x}_t) + \lambda m{J}_{m{ heta},t}(m{x}_t) m{v}_i \ &= m{x}_{m{ heta},t}(m{x}_t) + \lambda \sum_{j=1}^r \sigma_j m{u}_j m{v}_j^{ op} m{v}_i \ &= \hat{m{x}}_{0,t} + \lambda \sigma_i m{u}_i. \end{aligned}$$

$$oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) = oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^ op = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^ op$$

• Local linearity of the PMP with $\Delta x = v_i$, one column of V:

$$egin{aligned} m{x}_{m{ heta},t}(m{x}_t + \lambda m{v}_i) &pprox m{x}_{m{ heta},t}(m{x}_t) + \lambda m{J}_{m{ heta},t}(m{x}_t) m{v}_i \ &= m{x}_{m{ heta},t}(m{x}_t) + \lambda \sum_{j=1}^r \sigma_j m{u}_j m{v}_j^ op m{v}_i \ &= \hat{m{x}}_{0,t} + \lambda \sigma_i m{u}_i. \end{aligned}$$

- Low rankness of the Jacobian $J_{\theta,t}(x_t)$ (e.g., t=0.7):
 - $oldsymbol{\cdot}$ V can be computed efficiently via generalized power method!

Overview of LOCO Edit

• Illustration of LOCO Edit for unconditional diffusion models:

Overview of LOCO Edit

• Illustration of LOCO Edit for unconditional diffusion models:

• Visualizing editing directions identified via LOCO Edit:

Eye		Lip		Eyebrow		Nose		Dog ear		Dog mouth	
	18.4	+	÷.))	r	- <u>À</u>	63		9	

Visual Comparison with Existing Methods

Shallow Diffuse: Robust and Invisible Watermarking

Shallow Diffuse: Robust and Invisible Watermarking

Shallow Diffuse: Robust and Invisible Watermarking

Key idea: Inject the watermark Δx in the **Null Space** of $J_{\theta,t}(x_t)$:

$$egin{aligned} oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t^{\mathcal{W}}) \ = \ oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{igg|} \lambda oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) \cdot \Delta oldsymbol{x} \ pprox oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) \ = \ oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{igg|} \lambda oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) \ = \ oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{igg|} \lambda oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) \ = \ oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{igg|} \lambda oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{igg|} \lambda oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) \ = \ oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{igg|} \lambda oldsymbol{J}_{oldsymbol{ heta},t}(oldsymbol{x}_t) \ = \ oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{igbel{X}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{oldsymbol{ heta},t}(oldsymbol{x}_t) \ = \ oldsymbol{x}_{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{oldsymbol{ heta},t}(oldsymbol{x}_t) + oldsymbol{oldsymbol{x}_t}(oldsymbol{x}_t) + oldsymbol{ol$$

Shallow Diffuse: Comparison

Shallow Diffuse: Comparison

	Method	Genera	ation Consi	istency	Watermark Robustness (AUC ↑/TPR@1%FPR↑)					
		PSNR ↑	SSIM ↑	LPIPS ↓	Clean	Distortion	Regeneration	Adversarial	Average	
	SD w/o WM	32.28	0.78	0.06	-	-	-	-	-	
	DwtDct	37.88	0.97	0.02	0.83	0.54	0.00	0.82	0.36	
	DwtDctSvd	38.06	0.98	0.02	1.00	0.76	0.06	0.00	0.38	
0	RivaGAN	40.57	0.98	0.04	1.00	0.93	0.05	1.00	0.59	
0000	Stegastamp	31.88	0.86	0.08	1.00	0.97	0.47	0.26	0.68	
Ö	Gaussian Shading	10.17	0.23	0.65	1.00	0.99	1.00	0.47	0.92	
	Tree-Ring	28.22	0.57	0.41	1.00	0.90	0.95	0.31	0.84	
	RingID	12.21	0.38	0.58	1.00	0.98	1.00	0.79	0.96	
	Shallow Diffuse	32.11	0.84	0.05	1.00	1.00	0.96	0.62	0.93	
	SD w/o WM	33.42	0.85	0.03	-	-	-	-	-	
æ	DwtDct	37.77	0.96	0.02	0.76	0.34	0.01	0.78	0.27	
널	DwtDctSvd	37.84	0.97	0.02	1.00	0.74	0.04	0.00	0.36	
Sic	RivaGAN	40.6	0.98	0.04	0.98	0.88	0.04	0.98	0.56	
DiffusionDB	Stegastamp	32.03	0.85	0.08	1.00	0.96	0.46	0.26	0.67	
Ä	Gaussian Shading	10.61	0.27	0.63	1.00	0.99	1.00	0.46	0.92	
	Tree-Ring	28.3	0.62	0.29	1.00	0.81	0.87	0.26	0.76	
	RingID	12.53	0.45	0.53	1.00	0.99	1.00	0.79	0.97	
	Shallow Diffuse	33.07	0.89	0.03	1.00	1.00	0.93	0.59	0.92	

Discussion

- Training diffusion models exhibits implicit bias towards low-dimensional structures (low-rank Jacobian and linearity).
- We can leverage the benign structures to manipulate the generation and protect the copyright in principled manners.

Discussion

- Training diffusion models exhibits implicit bias towards low-dimensional structures (low-rank Jacobian and linearity).
- We can leverage the benign structures to manipulate the generation and protect the copyright in principled manners.
- Siyi Chen*, Huijie Zhang*, Minzhe Guo, Yifu Lu, Peng Wang, Qing Qu. Exploring Low-Dimensional Subspaces in Diffusion Models for Controllable Image Editing. Neural Information Processing Systems (NeurIPS'24), 2024.
- Wenda Li, Huijie Zhang, Qing Qu. Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models. NeurIPS, 2025 (spotlight, top 3.2 %).

Understanding Classifier-Free

Guidance (CFG)

Conditional Generation and Classifier Guidance

- In practice, we often want to generate **specific types** of images (e.g., "a dog," "a cat").
- To achieve this, we have to sample using a conditional score

$$\nabla \log p(x_t \mid c) = \nabla \log p(x_t) + \nabla p(c \mid x_t)$$
 conditional score unconditional score classifier score

so that the denoising process can be conditioned on the input c (e.g., a class label, a text prompt, an image embedding).

Conditional Generation and Classifier Guidance

- In practice, we often want to generate specific types of images (e.g., "a dog," "a cat").
- To achieve this, we have to sample using a conditional score

$$abla \log p(x_t \mid c) =
abla \log p(x_t) +
abla p(c \mid x_t)$$
 conditional score unconditional score classifier score

so that the denoising process can be conditioned on the input c (e.g., a class label, a text prompt, an image embedding).

• Classifier guidance achieve this by training a separate classifier to approximate $p(c \mid x_t)$ across noise levels t.

Classifier Guidance vs. Classifier Free Guidance

• Classifier guidance: low-quality with similar patterns;

Classifier Guidance vs. Classifier Free Guidance

- Classifier guidance: low-quality with similar patterns;
- CFG: Significantly improved visual quality and distinctiveness.

The CFG operates by conditional sampling from

$$\nabla \log p_{\text{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c})$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta}) + \gamma' \left(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta})\right)$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \underbrace{(\gamma' - 1)}_{\gamma} \underbrace{(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta}))}_{g(\boldsymbol{x}_t, \boldsymbol{c})}$$

The CFG operates by conditional sampling from

$$\nabla \log p_{\text{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c})$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta}) + \gamma' \left(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta})\right)$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \underbrace{\left(\gamma' - 1\right)}_{\gamma} \underbrace{\left(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta})\right)}_{g(\boldsymbol{x}_t, \boldsymbol{c})}$$

• Essentially, $g(x_t, c) = \nabla \log p(c \mid x_t)$, where conditional $\log p(x_t \mid c)$ and unconditional $\nabla \log p(x_t \mid \emptyset)$ are trained jointly.

The CFG operates by conditional sampling from

$$\nabla \log p_{\mathsf{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c})$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta}) + \gamma' \left(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta})\right)$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \underbrace{(\gamma' - 1)}_{\gamma} \underbrace{(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta}))}_{g(\boldsymbol{x}_t, \boldsymbol{c})}$$

- Essentially, $g(x_t, c) = \nabla \log p(c \mid x_t)$, where conditional $\log p(x_t \mid c)$ and unconditional $\nabla \log p(x_t \mid \emptyset)$ are trained jointly.
- We have $\nabla \log p_{\mathtt{CFG}}({m x}_t \mid {m c}) = \nabla \log p({m x}_t \mid {m c})$ only when $\gamma = 0$.

The CFG operates by conditional sampling from

$$\nabla \log p_{\mathsf{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c})$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta}) + \gamma' \left(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta})\right)$$

$$= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \underbrace{(\gamma' - 1)}_{\gamma} \underbrace{(\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) - \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{\theta}))}_{g(\boldsymbol{x}_t, \boldsymbol{c})}$$

- Essentially, $g(x_t, c) = \nabla \log p(c \mid x_t)$, where conditional $\log p(x_t \mid c)$ and unconditional $\nabla \log p(x_t \mid \emptyset)$ are trained jointly.
- We have $\nabla \log p_{\mathtt{CFG}}(m{x}_t \mid m{c}) = \nabla \log p(m{x}_t \mid m{c})$ only when $\gamma = 0$.
- However, the guidance strength $\gamma \geq 0$ is typically chosen to be quite large (e.g., $\gamma \in [5,8]$) for CFG to work.

Ablation Studies of Strength γ

Why does large γ in CFG work really well in practice?

Importance of Understanding CFG

CFG is the fundamental technique in modern text-to-image (T2I) diffusion models in the latent space.

Why does CFG Improve Sample Quality?

Questions

- Why naive conditional sampling is subpar?
- How CFG with large γ improves image quality?

Why does CFG Improve Sample Quality?

Questions

- Why naive conditional sampling is subpar?
- How CFG with large γ improves image quality?

We study these questions on **linear** diffusion models, capturing the essential insights on real-world nonlinear models.

Linear Models with Gaussian Data Assumption

Lemma (Linear Score with Gaussian Data)

Assume the data $p_0(x)$ is Gaussian with $x \sim \mathcal{N}(\mu, \Sigma)$, with the mean μ and the covariance $\Sigma = U\Lambda U^{\top}$. The optimal solution of the score function $\nabla \log p(x_t)$ at time-step t can be derived as

$$\nabla \log p(\boldsymbol{x}_t) = \frac{1}{\sigma_t^2} (\tilde{\boldsymbol{\Sigma}}_t - \boldsymbol{I}) (\boldsymbol{x}_t - \boldsymbol{\mu})$$

where
$$\tilde{\mathbf{\Sigma}}_t = \boldsymbol{U}\tilde{\mathbf{\Lambda}}_t\boldsymbol{U}^{\top}$$
 with $\tilde{\mathbf{\Lambda}}_t = \mathrm{diag}\left(\frac{\lambda_1}{\lambda_1 + \sigma_t^2}, \cdots, \frac{\lambda_d}{\lambda_d + \sigma_t^2}\right)$.

With Tweedie's formula, we have the relationship:

$$\nabla \log p(\mathbf{x}_t) \approx \frac{\mathbf{x}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \mathbf{x}_t}{\sigma_t^2}.$$

Class Condition Score and CFG

If we let the conditional and unconditional data distributions be $\mathcal{N}(\mu_c, \Sigma_c)$ and $\mathcal{N}(\mu_{uc}, \Sigma_{uc})$ with overlapping bases U_c and U_{uc} ,

$$\nabla \log p_{\text{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c}) = \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \gamma \cdot g(\boldsymbol{x}_t, \boldsymbol{c})$$

• Class condition score $\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c})$:

$$\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) = \frac{1}{\sigma_t^2} (\tilde{\boldsymbol{\Sigma}}_{c,t} - \boldsymbol{I}) (\boldsymbol{x}_t - \boldsymbol{\mu}_c)$$

Class Condition Score and CFG

If we let the conditional and unconditional data distributions be $\mathcal{N}(\mu_c, \Sigma_c)$ and $\mathcal{N}(\mu_{uc}, \Sigma_{uc})$ with overlapping bases U_c and U_{uc} ,

$$\nabla \log p_{\text{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c}) = \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \gamma \cdot g(\boldsymbol{x}_t, \boldsymbol{c})$$

• Class condition score $\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c})$:

$$\nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) = \frac{1}{\sigma_t^2} (\tilde{\boldsymbol{\Sigma}}_{c,t} - \boldsymbol{I}) (\boldsymbol{x}_t - \boldsymbol{\mu}_c)$$

- Classifier guidance only uses $\nabla \log p(x_t \mid c)$, which is shaped by the covariance structure Σ_c (Principal Components).
- PCs of Σ_c do not necessarily capture class-specific patterns.

Why Classifier Guidance Does Not Work

• Sampling only with class condition score $\nabla \log p({m x}_t \mid {m c})$:

$$oldsymbol{x}_t = oldsymbol{\mu}_c + \sum_{i=1}^d \sqrt{rac{\sigma_t^2 + \lambda_i}{\sigma_T^2 + \lambda_i}} oldsymbol{u}_{c,i}^T (oldsymbol{x}_T - oldsymbol{\mu}) oldsymbol{u}_{c,i}.$$

• PCs of Σ_c do not necessarily capture class-specific patterns.

Decomposition of CFG: Positive CPC

If we let $\mathcal{N}(\mu_c, \Sigma_c)$ and $\mathcal{N}(\mu_{uc}, \Sigma_{uc})$ be the data distributions of conditional and unconditional data, then

$$\begin{split} \nabla \log p_{\text{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c}) &= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \gamma \cdot g(\boldsymbol{x}_t, \boldsymbol{c}) \\ g(\boldsymbol{x}_t, \boldsymbol{c}) &= \mathcal{T}_{\text{Pos-CPC}} \; + \; \mathcal{T}_{\text{Neg-CPC}} \; + \; \mathcal{T}_{\text{Mean-Shift}} \end{split}$$

The positive contrastive principal component (Pos-CPC):

$$\mathcal{T}_{ extsf{Pos-CPC}} = rac{1}{\sigma_t^2} V_{t,+} \hat{oldsymbol{\Lambda}}_{t,+} V_{t,+}^ op (x_t - oldsymbol{\mu}_c),$$

where $V_{t,+}$ is the eigenvector matrix of $\tilde{\Sigma}_{c,t} - \tilde{\Sigma}_{uc,t}$ with positive eigenvalues $\hat{\Lambda}_{t,+}$, such that $v_{+,i}^{\top} \tilde{\Sigma}_{c,t} v_{+,i} > v_{+,i}^{\top} \tilde{\Sigma}_{uc,t} v_{+,i}$.

• $\mathcal{T}_{ t Pos ext{-CPC}}$ enhances components of $x_t - \mu_c$ that align with $V_{t,+}.$

Decomposition of CFG: Negative CPC

If we let the conditional and unconditional data distributions be $\mathcal{N}(\mu_c, \Sigma_c)$ and $\mathcal{N}(\mu_{uc}, \Sigma_{uc})$ with overlapping bases U_c and U_{uc} ,

$$\begin{split} \nabla \log p_{\texttt{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c}) &= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \gamma \cdot g(\boldsymbol{x}_t, \boldsymbol{c}) \\ g(\boldsymbol{x}_t, \boldsymbol{c}) &= \mathcal{T}_{\texttt{Pos-CPC}} \; + \; \mathcal{T}_{\texttt{Neg-CPC}} \; + \; \mathcal{T}_{\texttt{Mean-Shift}} \end{split}$$

• The negative contrastive principal component (Pos-CPC):

$$\mathcal{T}_{ exttt{Neg-CPC}} = rac{1}{\sigma_t^2} V_{t,-} \hat{oldsymbol{\Lambda}}_{t,-} V_{t,-}^ op (x_t - oldsymbol{\mu}_c).$$

where $V_{t,-}$ is the eigenvectors of $\tilde{\Sigma}_{c,t} - \tilde{\Sigma}_{uc,t}$ with negative eigenvalues $\hat{\Lambda}_{t,-}$, such that $v_{-,i}^{\top} \tilde{\Sigma}_{c,t} v_{-,i} < v_{-,i}^{\top} \tilde{\Sigma}_{uc,t} v_{-,i}$.

Decomposition of CFG: Negative CPC

If we let the conditional and unconditional data distributions be $\mathcal{N}(\mu_c, \Sigma_c)$ and $\mathcal{N}(\mu_{uc}, \Sigma_{uc})$ with overlapping bases U_c and U_{uc} ,

$$\begin{split} \nabla \log p_{\texttt{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c}) &= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \gamma \cdot g(\boldsymbol{x}_t, \boldsymbol{c}) \\ g(\boldsymbol{x}_t, \boldsymbol{c}) &= \mathcal{T}_{\texttt{Pos-CPC}} \; + \; \mathcal{T}_{\texttt{Neg-CPC}} \; + \; \mathcal{T}_{\texttt{Mean-Shift}} \end{split}$$

The negative contrastive principal component (Pos-CPC):

$$\mathcal{T}_{ exttt{Neg-CPC}} = rac{1}{\sigma_t^2} V_{t,-} \hat{oldsymbol{\Lambda}}_{t,-} V_{t,-}^ op (x_t - oldsymbol{\mu}_c).$$

where $V_{t,-}$ is the eigenvectors of $\tilde{\Sigma}_{c,t} - \tilde{\Sigma}_{uc,t}$ with negative eigenvalues $\hat{\Lambda}_{t,-}$, such that $v_{-,i}^{\top} \tilde{\Sigma}_{c,t} v_{-,i} < v_{-,i}^{\top} \tilde{\Sigma}_{uc,t} v_{-,i}$.

• $\mathcal{T}_{ exttt{Neg-CPC}}$ suppresses components of $x_t - \mu_c$ that align with $V_{t,-}.$

Decomposition of CFG: Mean-Shift

If we let the conditional and unconditional data distributions be $\mathcal{N}(\mu_c, \Sigma_c)$ and $\mathcal{N}(\mu_{uc}, \Sigma_{uc})$ with overlapping bases U_c and U_{uc} ,

$$\begin{split} \nabla \log p_{\texttt{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c}) &= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \gamma \cdot g(\boldsymbol{x}_t, \boldsymbol{c}) \\ g(\boldsymbol{x}_t, \boldsymbol{c}) &= \mathcal{T}_{\texttt{Pos-CPC}} \; + \; \mathcal{T}_{\texttt{Neg-CPC}} \; + \; \mathcal{T}_{\texttt{Mean-Shift}} \end{split}$$

The mean-shift component:

$$\mathcal{T}_{ exttt{Mean-Shift}} = rac{1}{\sigma_t^2} (I - ilde{\Sigma}_{uc,t}) (\mu_c - \mu_{uc}) pprox rac{\gamma}{\sigma_t^2} (\mu_c - \mu_{uc})$$

• $\mathcal{T}_{\text{Mean-Shift}}$ is independent of x_t , i.e., it adds a **constant perturbation** to all trajectories, leading to low diversity.

Decomposition of CFG: Mean-Shift

The mean-shift component:

$$\mathcal{T}_{ exttt{Mean-Shift}} = rac{1}{\sigma_t^2} (I - ilde{oldsymbol{\Sigma}}_{uc,t}) (oldsymbol{\mu}_c - oldsymbol{\mu}_{uc}) pprox rac{\gamma}{\sigma_t^2} (oldsymbol{\mu}_c - oldsymbol{\mu}_{uc})$$

• $\mathcal{T}_{\text{Mean-Shift}}$ is independent of x_t , i.e., it adds a **constant perturbation** to all trajectories, leading to low diversity.

How Does CFG Lead to High Quality Samples?

$$\begin{split} \nabla \log p_{\texttt{CFG}}(\boldsymbol{x}_t \mid \boldsymbol{c}) &= \nabla \log p(\boldsymbol{x}_t \mid \boldsymbol{c}) + \gamma \cdot g(\boldsymbol{x}_t, \boldsymbol{c}) \\ g(\boldsymbol{x}_t, \boldsymbol{c}) &= \mathcal{T}_{\texttt{Pos-CPC}} \; + \; \mathcal{T}_{\texttt{Neg-CPC}} \; + \; \mathcal{T}_{\texttt{Mean-Shift}} \end{split}$$

Linear-to-Nonlinear Transition in Real-World Models

(d) Evolution of singular vectors of network Jacobians $\boldsymbol{U}_t(\boldsymbol{x}_t)$ across different noise levels $\boldsymbol{\sigma}(t)$

Real-world Diffusion Models - Ablation Studies

Key observations:

- Mean-shift guidance dominates CFG's effect (in linear regime).
- CPC guidance could also lead to improved generation quality.

Discussion

Main takeaway:

- The diffusion model by itself does not adequately model the class-specific information.
- CFG identifies and enhances class-specific patterns.
- Xiang Li, Rongrong Wang, Qing Qu. Towards Understanding the Mechanisms of Classifier-Free Guidance. Neural Information Processing Systems (NeurIPS'25), 2025. (spotlight, top 3.2%)

Conclusion & Acknowledgement

Take-Home Message

- Training with Synthetic Data: suffer from model collapse due to generalization-to-memorization transition, and can be mitigated through effective data selection
- Content Manipulation: we can leverage low-dimensional subspaces to effectively manipulate the generation
- **Classifier-free Guidance:** we explained why CFG works through contrastive subspaces.

Major References

- Lianghe Shi, Meng Wu, Huijie Zhang, Zekai Zhang, Molei Tao, Qing Qu. A Closer Look at Model Collapse: From a Generalization-to-Memorization Perspective. Neural Information Processing Systems (NeurIPS'25), 2025. (spotlight, top 3.2%)
- Siyi Chen*, Huijie Zhang*, Minzhe Guo, Yifu Lu, Peng Wang, Qing Qu. Exploring Low-Dimensional Subspaces in Diffusion Models for Controllable Image Editing. Neural Information Processing Systems (NeurIPS'24), 2024.
- Wenda Li, Huijie Zhang, Qing Qu. Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models. NeurIPS, 2025 (spotlight, top 3.2 %).
- Xiang Li, Rongrong Wang, Qing Qu. Towards Understanding the Mechanisms of Classifier-Free Guidance. Neural Information Processing Systems (NeurIPS'25), 2025. (spotlight, top 3.2%)

Acknowledgement

Lianghe Shi (UMich)

Xiang Li (UMich)

Meng Wu (UMich)

Molei Tao (GaTech)

Huijie Zhang (UMich)

Wenda Li (UMich)

Siyi Chen (UMich)

Rongrong Wang (MSU)

Acknowledgement

Thank You!