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Lecture Schedule

We focus on the mathematical foundations of diffusion models
through low-dim structures and their scientific applications:

• Introduction of Diffusion Models
• Lecture I: Generalization of Learning Diffusion Models
• Lecture II: Controllability of Diffusion Models
• Lecture III: From Theory to Scientific Applications 2
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Training with Synthetic Data &
Model Collapse



Modern Generative AI - Diffusion Models

Diffusion models can generate high-quality images that are
indistinguishable from real ones, even to humans.
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Self-consuming Loop for Training GenAI Models

Contaminate

Diffusion 
Models

Training 
data

Generated 
data

Training Inference

AI-generated data is mixed into the training dataset for training the
next-iteration model.
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Model Collapse

(Gerstgrasser et al.’24, COLM) (Gibney et al.’24, Nature News) 

• Model Collapse: Model performance degrades over iterations1.
Prior studies have shown that:

• The visual quality of the generated images deteriorates. (FID ↑)
• The test loss increases. (loss ↑)
• The variance of the generated images decreases. (σ → 0)

1An iteration denotes a complete training and sampling cycle, not a single gradient
update during training.
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Model Collapse

(Gerstgrasser et al.’24, COLM) (Gibney et al.’24, Nature News) 

• Model Collapse: Model performance degrades over iterations1.
Prior studies have shown that:

• The visual quality of the generated images deteriorates. (FID ↑)
• The test loss increases. (loss ↑)
• The variance of the generated images decreases. (σ → 0)

We reveal a generalization-to-memorization transition in
model collapse, inspiring new mitigation strategies.

1An iteration denotes a complete training and sampling cycle, not a single gradient
update during training. 7



Generalization to Memorization Transition

Generalization 
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Generalization Score: the average distance between each generated
image x in Gn and its nearest image z in the training dataset Dn:

GS(n) ≜ Dist(Dn,Gn) =
1

|Gn|
∑
x∈Gn

min
z∈Dn

κ(x, z),

where κ(·, ·) : Rd × Rd → R denotes a distance metric.
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Why does the Transition Occur?

Our Hypothesis

With a fixed sample size, information (measured by entropy) of
the dataset falls over training loops, leading to memorization.

We adopt the Kozachenko-Leonenko (KL) estimator2 to empirically
estimate the entropy of a training dataset D as

Ĥγ(D) = ψ(|D|)− ψ(γ) + log cd +
d

|D|
∑
x∈D

log εγ(x),

where ψ : N→ R is the digamma function; cd denotes the volume of
the unit ball in the d-dimensional space; and εγ(x) = κ(x,xγ)

represents the γ-nearest neighbor distance.

2Leonenko Kozachenko. Sample estimate of the entropy of a random vector.
Problems of Information Transmission.
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The Entropy of the Training Datasets

Left: Entropy of training data over self-consuming iterations under
different data sizes. (Experiments conducted on Cifar-10 using
DDPM)

Middle and Right: PCA visualization of data before and after
collapse.
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The Relation Between Entropy and Generalization Score

(a) Generalization score vs. estimated
entropy.

(b) Generalization score vs. trace of
covariance.

• All the points in (a) align well on a single line.
• The Generalization score shows only a weak, size-dependent

correlation with variance.
• Entropy is therefore the more robust indicator.
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Mitigating Collapse via Entropy-Based Sample Selection

Intuition. Given a candidate pool S , consisting of both real and
previously AI-generated images, choose a subset D ⊂ S of size N
that maximizes training-set entropy:

max
D⊂S, |D|=N

∑
x∈D

log min
y∈D\{x}

κ(x,y)︸ ︷︷ ︸
Ĥ1(D)

.

• Yields a diverse, high-entropy training set for next-generation
models.

• Difficult to optimize globally; requires approximation methods.
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Mitigating Collapse via Entropy-Based Sample Selection

Algorithm I: Greedy Selection

1. Initialization: randomly pick x0 ∈ S and set D ← {x0}.
2. Iterative step (Terminate at |D| = N ):

xsel = argmax
x∈S\D

[
min
y∈D

κ(x,y)

]
, D ← D ∪ {xsel}.

Algorithm II: Threshold Decay Filter

This method extends greedy selection by introducing an additional
hyperparameter that controls the degree of greediness.
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Two Different Paradigms of Self-consuming Training Loops

Training Data 

Real Data

Previously 
Generated Data

Training Data

Generated Data

Replace Paradigm Accumulate-subsample Paradigm

Subsample

Our experiments are conducted under two distinct paradigms
explored in prior studies.
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Results: Generalization Score & FID

(a) Generalization Score over iterations

(b) FID over iterations

Entropy-based selection methods help preserve generalization
performance and mitigate the rise in FID.

15



Analysis for the Improvement

(a) Estimated entropy over iterations

(b) Data composition over iterations

Through Greedy selection strategy, we maximize the entropy and
observe a preference for selecting real data (blue) over synthetic
data (others). 16



Mitigating Diversity Collapse of Classifier Free Guidance

Comparison of MNIST generations with different methods:

(a) Unconditional (b) Classifier-free guidance (CFG) (c) CFG with Greedy Selection

Visually ambiguous!

Looks better, but lacks diversity.

Maintain both quality and diversity!

17



Training Under More Realistic Settings

A more realistic setting where fresh real images are incorporated
into each iteration.

Model A B C
FID 28.0 30.8 27.5

The method can outperform the original model trained on the
original real images.
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Summary

• Diffusion models collapse from generalization to
memorization in the self-consuming loop.

• The entropy of the training dataset can serve as a robust
predictor of memorization.

• Through the entropy-based selection methods, we
mitigate the memorization issue and slow down the
quality degradation.

From this perspective, many questions need to be addressed:

• What caused the entropy of the dataset to decrease? (sampling
or architecture bias?)

• Theoretically, how can we characterize the decaying rate based
on simplified models?

• How can we further design methods for mitigating model
collapse?

19
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Summary

• Diffusion models collapse from generalization to
memorization in the self-consuming loop.

• The entropy of the training dataset can serve as a robust
predictor of memorization.

• Through the entropy-based selection methods, we
mitigate the memorization issue and slow down the
quality degradation.

1. Lianghe Shi, Meng Wu, Huijie Zhang, Zekai Zhang, Molei Tao, Qing Qu. A
Closer Look at Model Collapse: From a Generalization-to-Memorization
Perspective. Neural Information Processing Systems (NeurIPS’25), 2025.
(spotlight, top 3.2%)
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Low-Rank Image Editing &
Watermarking



Controlled Generation is Challenging

• Text prompt control is mostly global, they are not precise and
they cannot do local editing.

• ControlNet is expensive and it relies on an extra neural
network.

• Most methods remain heuristic and they lack interpretability.
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LOw-rank COntrollable Image Editing (LOCO Edit)

real − eye size +	smile real +	smile − hair color

Original (𝑡 = 0.5 ) Transfer (𝑡 = 0.8 )

Open mouth Close mouth

Original Transfer (other)

Eye shape

Mouth shape Hair curvature Hair amount Eye shape

(a) Precise and Localized

real − eye size +	smile real +	smile − hair color

Original (𝑡 = 0.5 ) Transfer (𝑡 = 0.8 )

Open mouth Close mouth

Original Transfer (other)

Eye shape Mouth shape Hair curvature Hair amount

(b) Homogeneity & Transferability

real − eye size +	smile real +	smile − hair color

Original (𝑡 = 0.5 ) Transfer (𝑡 = 0.8 )

Open mouth Close mouth

Original Transfer (other)

Eye shape Mouth shape Hair curvature Hair amount

(c) Composability & Disentanglement

real − eye size +	smile real +	smile − hair color
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Original Transfer (other)
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(d) Linearity
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Editing in Text-to-image Diffusion Models

Stable Diffusion

Ear up

+	“glasses”

DeepFloyd

mask

mask

Latent Consistency

+	“glasses”mask

Remove beardmask Side viewmask

mask +	“curly hair”

(a) Unsupervised T2I Edit

(b) Text-supervised T2I Edit

Figure 5: T-LOCO Edit on T2I diffusion models.
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How does LOCO Edit Work?

Consider a unconditional diffusion model sθ :

• Posterior mean predictor (PMP) for the image x0:

xθ,t(xt; t) :=
xt + (1− αt) sθ(xt, t)√

αt
≈ E[x0|xt],

• The 1st order Taylor expansion of xθ,t(xt + λ∆x) at xt:

lθ(xt;λ∆x) := xθ,t(xt) + λJθ,t(xt) ·∆x,

where Jθ,t(xt) = ∇xt
xθ,t(xt) is the Jacobian of xθ,t(xt)

24
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Inductive Bias Towards “Simple” Solutions3

(a) Low-rankness of the Jacobian (b) Local linearity of PMP

The trained network via Adam tends to have simple structures:

• Low-rankness of the Jacobian Jθ,t(xt) = ∇xtxθ,t(xt):

Jθ,t(xt) = UΣU⊤ =

r∑
i=1

σiuiu
⊤
i .

• Local linearity of the DAE:

xθ,t(xt + λ∆x) ≈ xθ,t(xt) + λJθ,t(xt) ·∆x

.
3X. Li, Y. Dai, Q. Qu. Understanding Generalizability of Diffusion Models Requires

Rethinking the Hidden Gaussian Structure. NeurIPS, 2024.
25



How does LOCO Edit Work?

(a) Low-rankness of the Jacobian (b) Local linearity of PMP

Two key properties:

• Local linearity of the PMP xθ,t(xt) ≈ lθ(xt;λ∆x).
• Low-rankness of the Jacobian
Jθ,t(xt) = UΣV ⊤ =

∑r
i=1 σiuiv

⊤
i ;

26



How does LOCO Edit Work?

Jθ,t(xt) = UΣV ⊤ =

r∑
i=1

σiuiv
⊤
i

• Local linearity of the PMP with ∆x = vi, one column of V :

xθ,t(xt + λvi) ≈ xθ,t(xt) + λJθ,t(xt)vi

= xθ,t(xt) + λ

r∑
j=1

σjujv
⊤
j vi

= x̂0,t + λσiui.

• Low rankness of the Jacobian Jθ,t(xt) (e.g., t = 0.7):
• V can be computed efficiently via generalized power method!
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Overview of LOCO Edit

• Illustration of LOCO Edit for unconditional diffusion models:

DDIM-Inv

DDIM

Find

2

1

• Visualizing editing directions identified via LOCO Edit:

Eye Hair Lip Eyebrow Nose Dog ear Dogmouth

Eye Hair Lip Eyebrow Nose Dog ear Dogmouth

Eye Lip Eyebrow Nose Dog ear Dog mouth
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Visual Comparison with Existing Methods

Origin NoiseCLR BlendedDiffusion LOCO (Ours)Asyrp
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Shallow Diffuse: Robust and Invisible Watermarking

30



Shallow Diffuse: Robust and Invisible Watermarking
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Shallow Diffuse: Robust and Invisible Watermarking

Key idea: Inject the watermark ∆x in the Null Space of Jθ,t(xt):

xθ,t(x
W
t ) = xθ,t(xt) + λJθ,t(xt) ·∆x

≈0

≈ xθ,t(xt)

32



Shallow Diffuse: Comparison

33



Shallow Diffuse: Comparison
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Discussion

• Training diffusion models exhibits implicit bias towards
low-dimensional structures (low-rank Jacobian and
linearity).

• We can leverage the benign structures to manipulate the
generation and protect the copyright in principled
manners.

2. Siyi Chen*, Huijie Zhang*, Minzhe Guo, Yifu Lu, Peng Wang, Qing Qu.
Exploring Low-Dimensional Subspaces in Diffusion Models for
Controllable Image Editing. Neural Information Processing Systems
(NeurIPS’24), 2024.

3. Wenda Li, Huijie Zhang, Qing Qu. Shallow Diffuse: Robust and Invisible
Watermarking through Low-Dimensional Subspaces in Diffusion
Models. NeurIPS, 2025 (spotlight, top 3.2 %).
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Understanding Classifier-Free
Guidance (CFG)



Conditional Generation and Classifier Guidance

• In practice, we often want to generate specific types of images
(e.g., “a dog,′′ “a cat′′).

• To achieve this, we have to sample using a conditional score

∇ log p(xt | c)
conditional score

= ∇ log p(xt)
unconditional score

+ ∇p(c | xt)
classifier score

so that the denoising process can be conditioned on the input c
(e.g., a class label, a text prompt, an image embedding).

• Classifier guidance achieve this by training a separate classifier
to approximate p(c | xt) across noise levels t.
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Classifier Guidance vs. Classifier Free Guidance

• Classifier guidance: low-quality with similar patterns;

• CFG: Significantly improved visual quality and distinctiveness.
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Classifier Free Guidance (CFG)

The CFG operates by conditional sampling from

∇ log pCFG(xt | c)
= ∇ log p(xt | ∅) + γ′ (∇ log p(xt | c)−∇ log p(xt | ∅))
= ∇ log p(xt | c) + (γ′ − 1)︸ ︷︷ ︸

γ

(∇ log p(xt | c)−∇ log p(xt | ∅))︸ ︷︷ ︸
g(xt,c)

• Essentially, g(xt, c) = ∇ log p(c | xt), where conditional
log p(xt | c) and unconditional ∇ log p(xt | ∅) are trained jointly.

• We have ∇ log pCFG(xt | c) = ∇ log p(xt | c) only when γ = 0.
• However, the guidance strength γ ≥ 0 is typically chosen to be

quite large (e.g., γ ∈ [5, 8]) for CFG to work.

38



Classifier Free Guidance (CFG)

The CFG operates by conditional sampling from

∇ log pCFG(xt | c)
= ∇ log p(xt | ∅) + γ′ (∇ log p(xt | c)−∇ log p(xt | ∅))
= ∇ log p(xt | c) + (γ′ − 1)︸ ︷︷ ︸

γ

(∇ log p(xt | c)−∇ log p(xt | ∅))︸ ︷︷ ︸
g(xt,c)

• Essentially, g(xt, c) = ∇ log p(c | xt), where conditional
log p(xt | c) and unconditional ∇ log p(xt | ∅) are trained jointly.

• We have ∇ log pCFG(xt | c) = ∇ log p(xt | c) only when γ = 0.
• However, the guidance strength γ ≥ 0 is typically chosen to be

quite large (e.g., γ ∈ [5, 8]) for CFG to work.

38



Classifier Free Guidance (CFG)

The CFG operates by conditional sampling from

∇ log pCFG(xt | c)
= ∇ log p(xt | ∅) + γ′ (∇ log p(xt | c)−∇ log p(xt | ∅))
= ∇ log p(xt | c) + (γ′ − 1)︸ ︷︷ ︸

γ

(∇ log p(xt | c)−∇ log p(xt | ∅))︸ ︷︷ ︸
g(xt,c)

• Essentially, g(xt, c) = ∇ log p(c | xt), where conditional
log p(xt | c) and unconditional ∇ log p(xt | ∅) are trained jointly.

• We have ∇ log pCFG(xt | c) = ∇ log p(xt | c) only when γ = 0.

• However, the guidance strength γ ≥ 0 is typically chosen to be
quite large (e.g., γ ∈ [5, 8]) for CFG to work.
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Classifier Free Guidance (CFG)

The CFG operates by conditional sampling from

∇ log pCFG(xt | c)
= ∇ log p(xt | ∅) + γ′ (∇ log p(xt | c)−∇ log p(xt | ∅))
= ∇ log p(xt | c) + (γ′ − 1)︸ ︷︷ ︸

γ

(∇ log p(xt | c)−∇ log p(xt | ∅))︸ ︷︷ ︸
g(xt,c)

• Essentially, g(xt, c) = ∇ log p(c | xt), where conditional
log p(xt | c) and unconditional ∇ log p(xt | ∅) are trained jointly.

• We have ∇ log pCFG(xt | c) = ∇ log p(xt | c) only when γ = 0.
• However, the guidance strength γ ≥ 0 is typically chosen to be

quite large (e.g., γ ∈ [5, 8]) for CFG to work.
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Ablation Studies of Strength γ

Why does large γ in CFG work really well in practice?
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Importance of Understanding CFG

CFG is the fundamental technique in modern text-to-image (T2I)
diffusion models in the latent space.
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Why does CFG Improve Sample Quality?

Class: mushroom cheeseburger
EDM

coffee mug golden retriever

Naïve 
conditional 
samples

Linear Gaussian Model

CFG Samples 

Class: mushroom cheeseburger coffee mug golden retriever

(a) (b)

Questions

• Why naive conditional sampling is subpar?
• How CFG with large γ improves image quality?

We study these questions on linear diffusion models, capturing the
essential insights on real-world nonlinear models.
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Linear Models with Gaussian Data Assumption

Lemma (Linear Score with Gaussian Data)

Assume the data p0(x) is Gaussian with x ∼ N (µ,Σ), with the
mean µ and the covariance Σ = UΛU⊤. The optimal solution
of the score function∇ log p(xt) at time-step t can be derived as

∇ log p(xt) =
1

σ2
t

(Σ̃t − I)(xt − µ)

where Σ̃t = UΛ̃tU
⊤ with Λ̃t = diag

(
λ1

λ1+σ2
t
, · · · , λd

λd+σ2
t

)
.

With Tweedie’s formula, we have the relationship:

∇ log p(xt) ≈
xθ,t(xt)− xt

σ2
t

.
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Class Condition Score and CFG

If we let the conditional and unconditional data distributions be
N (µc,Σc) and N (µuc,Σuc) with overlapping bases Uc and Uuc,

∇ log pCFG(xt | c) = ∇ log p(xt | c) + γ · g(xt, c)

• Class condition score∇ log p(xt | c):

∇ log p(xt | c) =
1

σ2
t

(Σ̃c,t − I)(xt − µc)

• Classifier guidance only uses ∇ log p(xt | c), which is shaped by
the covariance structure Σc (Principal Components).

• PCs of Σc do not necessarily capture class-specific patterns.
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Why Classifier Guidance Does Not Work

• Sampling only with class condition score ∇ log p(xt | c):

xt = µc +

d∑
i=1

√
σ2
t + λi
σ2
T + λi

uT
c,i(xT − µ)uc,i.

• PCs of Σc do not necessarily capture class-specific patterns.
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Decomposition of CFG: Positive CPC

If we let N (µc,Σc) and N (µuc,Σuc) be the data distributions of
conditional and unconditional data, then

∇ log pCFG(xt | c) = ∇ log p(xt | c) + γ · g(xt, c)

g(xt, c) = TPos-CPC + TNeg-CPC + TMean-Shift

• The positive contrastive principal component (Pos-CPC):

TPos-CPC =
1

σ2
t

Vt,+Λ̂t,+V
⊤
t,+(xt − µc),

where Vt,+ is the eigenvector matrix of Σ̃c,t− Σ̃uc,t with positive
eigenvalues Λ̂t,+, such that v⊤

+,iΣ̃c,tv+,i > v⊤
+,iΣ̃uc,tv+,i.

• TPos-CPC enhances components of xt − µc that align with Vt,+.
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Decomposition of CFG: Negative CPC

If we let the conditional and unconditional data distributions be
N (µc,Σc) and N (µuc,Σuc) with overlapping bases Uc and Uuc,

∇ log pCFG(xt | c) = ∇ log p(xt | c) + γ · g(xt, c)

g(xt, c) = TPos-CPC + TNeg-CPC + TMean-Shift

• The negative contrastive principal component (Pos-CPC):

TNeg-CPC =
1

σ2
t

Vt,−Λ̂t,−V
⊤
t,−(xt − µc).

where Vt,− is the eigenvectors of Σ̃c,t − Σ̃uc,t with negative
eigenvalues Λ̂t,−, such that v⊤

−,iΣ̃c,tv−,i < v⊤
−,iΣ̃uc,tv−,i.

• TNeg-CPC suppresses components of xt − µc that align with Vt,−.
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Decomposition of CFG: Mean-Shift

If we let the conditional and unconditional data distributions be
N (µc,Σc) and N (µuc,Σuc) with overlapping bases Uc and Uuc,

∇ log pCFG(xt | c) = ∇ log p(xt | c) + γ · g(xt, c)

g(xt, c) = TPos-CPC + TNeg-CPC + TMean-Shift

• The mean-shift component:

TMean-Shift =
1

σ2
t

(I − Σ̃uc,t)(µc − µuc) ≈
γ

σ2
t

(µc − µuc)

• TMean-Shift is independent of xt, i.e., it adds a constant
perturbation to all trajectories, leading to low diversity.
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Decomposition of CFG: Mean-Shift

• The mean-shift component:

TMean-Shift =
1

σ2
t

(I − Σ̃uc,t)(µc − µuc) ≈
γ

σ2
t

(µc − µuc)

• TMean-Shift is independent of xt, i.e., it adds a constant
perturbation to all trajectories, leading to low diversity.
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How Does CFG Lead to High Quality Samples?

∇ log pCFG(xt | c) = ∇ log p(xt | c) + γ · g(xt, c)

g(xt, c) = TPos-CPC + TNeg-CPC + TMean-Shift
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Linear-to-Nonlinear Transition in Real-World Models

Linear Regime Nonlinear regimeClass: cheeseburger

No guidance 1 ! = '/. 22 **. +) /3. .* //. .0 +. &+ &. )' '. /+ /. )2 /. /) .. 3)

(a) Effects of nonlinear CFG at individual timesteps

(b) Effects of linear CFG at individual timestep
/4/!(1!)

0). 33 &'. )* '/. 22 **. +) /3. .* //. .0 +. &3 &. )' '. /+ .. 3)1 ! = 2.. .

(c) Correlation matrix between the PCs (/) of data covariance and singular vectors of network Jacobians /!(1!)

PC /!(1!) (23. () /!(1!) (%%. '() /!(1!) (-4. +%) /!(1!) ('. 2') /!(1!) (3. -') /!(1!) (-. -() /!(1!) (+. 4()

(d) Evolution of singular vectors of network Jacobians /!(1!) across different noise levels "(!) 

No guidance 1 ! = '/. 22 **. +) /3. .* //. .0 +. &+ &. )' '. /+ /. )2 /. /) .. 3)
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Real-world Diffusion Models - Ablation Studies

Key observations:

• Mean-shift guidance dominates CFG’s effect (in linear regime).
• CPC guidance could also lead to improved generation quality.
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Discussion

Main takeaway:
• The diffusion model by itself does not adequately model

the class-specific information.
• CFG identifies and enhances class-specific patterns.

4. Xiang Li, Rongrong Wang, Qing Qu. Towards Understanding the
Mechanisms of Classifier-Free Guidance. Neural Information
Processing Systems (NeurIPS’25), 2025. (spotlight, top 3.2%)
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Take-Home Message

• Training with Synthetic Data: suffer from model collapse
due to generalization-to-memorization transition, and
can be mitigated through effective data selection

• Content Manipulation: we can leverage low-dimensional
subspaces to effectively manipulate the generation

• Classifier-free Guidance: we explained why CFG works
through contrastive subspaces.
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