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What is Attention?

“Everyone knows what attention is... It is the taking possession by the
mind in clear and vivid form, of one out of what seem several
simultaneously possible objects or trains of thought..." William James,
Principles of Psychology (1890).

“the ability to focus selectively on a selected stimulus, sustaining that
focus and shifting it at will”

“'the concentration of awareness on some phenomenon to the
exclusion of other stimuli'.
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Neurobiology of Attention

* The word “attention” is an inadequate, singular term for a multitude
of inter-related processes. We use a host of adjectives to describe
attention—for example, we say that attention can be divided,
oriented, sustained, or focused, and many of these descriptions
likely reflect underlying, dissociable neural processes. Complicating
matters, attentional resources can be allocated to either external
stimuli, or to internal stimuli such as thoughts and memories.
Furthermore, we often confuse the regulation of attention (a covert

behavior) with the regulation of movement (an overt behavior) when
discussing an “attentional disorder”.

[Arnsten and Castellanos. Neurobiology of attention regulation and its
disorders, Pediatric Psychopharmacology, 2010].

— Focus on the most basic building blocks of what attention may be
in artificial neural networks (the Standard Model).



The Standard Model
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Sum Activation
Function

O=f(}, w;x,)
Basic elementary operations:
1) Activation S= Dot product x.w

2) Output O=f(S) (f linear or non-linear activation function)

SM universal
approximation properties
SM extensions (softmax,
polynomial activations,
product of outputs, ....)
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Attention in DL and NLP applications

Important
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Unimportant

Sequence to sequence models



Attention Mechanisms in DL and NLP

Various formulations:
* Content-base attention Graves et al., 2014
e Dot-Product attention Luong et al., 2015
* Additive attention Bahdanau et al., 2015
e Vaswani et al. 2017
* Transformer Architectures
e Standard modules in DL packages (TensorFlow, PyTorch)
* Google’s BERT, OpenAl’s GPT, XLNet ....



https://blog.floydhub.com/gpt2/
https://blog.floydhub.com/gpt2/

Transformer Model & (self)-attention

The Transformer Model is entirely A , ,

] . Tnear Ensemble’ multiple
built on the self-attention B attention in parallel
mechanisms, without using sequence- Concat
aligned recurrent architectures. y It

. Scaled Dot-Product u&h
Every input element has three Atention
A A A
learnable vectors: , , =y e
3 nd Linear L] Linear J Linear u

e

\/I_l Rather than only computing the

attention once, the multi-head
mechanism runs through the scaled
dot-product attention multiple times in
parallel.

Attention(Q, K, V) = softmax(
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The Standard Model
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Sum Activation
Function

O=f(}, w;x,)
Basic elementary operations:
1) Activation S= Dot product x.w

2) Output O=f(S) (f linear or non-linear activation function)

3 variable types:
S,0,w



Classification of Attention Mechanisms

(or Extensions of the SM)

* In the SM, there are 3 types of variables: S (activation), O (output),
and w (synaptic weights).

* Attention signals can be classified according to their attending Origin,
their attended Target, and the underlying Mechanism.

* With two mechanisms, addition and multiplication, this corresponds

to 18 possibilities: s | [ w |
S +, X +, X +, X
@) + X +, X +, X

* Multiplicity issues.
* Origin: only of type O = 6 possibilities.



Classification of Attention Mechanisms

* Originis of type O
e Six possibilities:

Target
Addition Activation Attention
(SM)

Mechanism
Multiplication Output Gating Synaptic Gating
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Database Vocabulary

Key

Suwdentld | Driercense# | Adress | Fsthame | Lasthame

123456
123789
123770
123775

Values=
Rows
Contents

Query:
123770?



Attention weights
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Fundamental Property: equivariant to O Vectors

permutation of the inputs (!).

Scalars




Attention Enables Computing the Dot Product of
the Activities of Two Layers of the Same Size
(output or synaptic gating)

gated output
O= ) x,v

o
/\ <—®<— Viva Vi pairwise gating layer

X1 Xy

[Can be used to derive alternative proof of universal
approximation properties for SM + attention]



Softmax Attention=Dot Product with Softmax
(output or synaptic gating)

gated output

O=sum, v, X

1
/\ <—®<— ViVa Vi gating layer:

o0 o :
oo © softmax unit

1% X vi=exp y;/ sum; exp v,
e o
Yl y2 yn

Attention in NN is based on the ability to compute and fast-store variable-length
dot products.



SM Network for Computing Dot U;VitUoVotUsVs
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Chemistry Applications

* Prediction of Chemical Reactions

Physics Applications

* Tagging Extreme Jets
 Jet Parton Matching
* Neutrino Classification

* Neutron Stars EoS



Small Molecule Representations

O

H,N
OH

OH

Problem: molecular
graphs are undirected

NC(CO)C(=0)0 0010001001010001



Deep Learning Chemical Reactions

A+B > C+D

RCH=CH2 + HBr — RCH(Br)-CH3

{a] \ e Br H
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{b} H_\f"r: y Br H
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David Fooshee, Aaron Mood, Eugene Gutman, Amin Tavakoli, Gregor Urban,
Frances Liu, Nancy Huynh, David Van Vranken, and Pierre Baldi. Deep Learning
for Chemical Reaction Prediction. Molecular Systems Design & Engineering, Royal
Society of Chemistry, 3, 442 — 452, (2018).
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SPANet Jet-Parton Matching in LHC Top Quark Decays

Primary (all-hadronic) decay channel produces six particles - two qgb triplets with opposite charge — originating
from the top — antitop particle pair which we wish to reconstruct.

After these particles are produced, they are propagated and measured by the detector as jets.

Along with the jets from each of the particles, there may be additional jets from other decay products.

Final Particles

Theoretical Obsire‘;:dAs :_ {].1;].2;].3;].4;].5;].6;]'7;].8}
Parent Particles — /b
To Reconstruct N 2 ¢
//%E\ ’ Match Jets to Particle Labels
B - b,q,0,q,b",0,q,q}

Garbage Jets

This is a difficult matching problem: Observing the jets from the
detector, can you determine which jets belong to which particles?
Effective matching requires exploiting the symmetries in this problem!



SPANet Complete Architecture

Construct an architecture following the structure of the original
Feynman Diagram with attention as its core operation.

Attention Use

Symmetric jet
matching

Particle-level
encoding

Event-level
context-aware
encoding

PL PR
Tensor Tensor
Attention Attention
) )
Transformer Transformer
Encoder Encoder
Transformer Encoder
o)

(o)

(o)

Transformer Encoder

A A A A
E

5353

Jet Independent Embeddings

Tensor attention to predict the
most likely assignment of jets
associated with each particle.

Split the information stream into
a finite collection of “particles”.

Heavily employ attention in
several sections within our
network for context-aware
permutation-invariant learning.

Input is unsorted set of jet
4-momentum vectors.



SPANet Results

« We compare SPANet to a classical permutation-based method based on y? probability of assignments.
* SPANet uses attention to match all top-quarks while the y? method needs to compute many jet-permutations.
* SPANet reduces the runtime from O(N°®) to O(N3) while increasing efficiency by ~30% across the board.

v° Efficiency SPA-NET Efficiency

jVjets 6event 6‘;01) 6gop 6event 6gop 61'iop
6 61.8% 65.0% 24.2% 80.7% 84.1% 56.7%
7 40.8% 50.4% 24.6% 66.8% 75.7% 56.2%

>8 23.2% 35.5% 20.2% 52.3% 66.2% 52.9%

Inclusive 37.7% 47.0% 23.0% 63.7% 73.5% 55.2%

Alexander Shmakov

Runtime on 8 jet events

x? : 369 ms per event
Spatter : 4.4 ms per event

Michael James Fenton, Alexander Shmakov, Ta-Wei
Ho, Shih-Chieh Hsu, Daniel Whiteson, and Pierre
Baldi. Permutationless many-jet event
reconstruction with symmetry preserving attention
networks. Physical Review D, in press.



SPANet Results

* General formulation allows us to extend this technique to virtually any possible event at the LHC.

* Split particle paths and symmetric attention may be extended to match jets in incomplete events — where one
or more particles are missing due to detector loss, allowing us to use more training data.

* Extended this technique to two other, more complicated, events at the LHC: ttH and tttt.

* tttt Event is so complex and large that the y? method cannot be tractably computed!

bl Event SPA-NET Efficiency \? Efficiency
t q Njets Fraction | Event Higgs  Top Event Higgs  Top
g 00000 A 1 1 All Events =38 0.261 0.370  0.497 0.540 | 0.056 0.193 0.092
1 =9 0.313 0343 0492 0.514 | 0.053 0.160 0.102
ttH H b() > 10 0.313 0294 0472 0473 | 0.031 0.150 0.056
"""" <b Inclusive 0.972 0330 0485 0.502 | 0.045 0.164 0.081
qg Complete Events ==38 0.042 0.532  0.657 0.663 | 0.040 0.220 0.135
g .00000Q A a =9 0.070 0422 0.601 0.596 | 0.019 0.152 0.079
t? 72 > 10 0.115 0.306 0.545 0.523 | 0.004 0.126 0.073
b‘) Inclusive 0.228 0383 0.583 0.572 | 0.016 0.153 0.087
Event SpPA-NET Efficiency
Njets Fraction | Event  Top Quark
All Events =12 0.219 0.276 0.484
=13 0.304 0.247 0.474
> 14 0.450 0.198 0.450
tttt Inclusive | 0974 | 0231  0.464
Complete Events ==12 0.005 0.350 0.617
=13 0.016 0.249 0.567
> 14 0.044 0.149 0.504
Inclusive 0.066 0.191 0.529

Alexander Shmakov, Michael James Fenton, Ta-Wei Ho, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi. SPANet: Generalized
Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention. SciPost Physics, in press.
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pressure

The problem

Equation Mass-Radius

) Star parameters Neutron Star

of State relation 2 params: (mass, radius) X-ray data

(2 params) (2 params: M,R) 3 nuis params (dist, temp, dust) (1024 chan.80% empty)
=)
energy density g radius g radius g
Training data T Inference
Fixed EOS, sample of (M,R) pairs End-to-end: spectra -> EOS
For each M,R pair, add 3 nuisance param Also might try: spectra-> star
generate sample spectra star -> EOS Jordan Ott

https://arxiv.org/abs/2002.04699




Prediction of EOS coefficients
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Cardinal Capacity

e h =target function (typically known from examples)

* A = class of hypothesis or approximating functions (typlcally associated with a NN

architecture)

C(A) =log, |A]

Average number of bits required
to specify a function in A.

In a neural architecture, number
of bits that must be transferred
from the data to the synapses
during learning

P. Baldi and R. Vershynin. The
capacity of feedforward neural
networks. Neural Networks,
116, August 2019, Pages 288-
311, (2019). Also: Arxiv
1901.00434.



Single Linear (or Polynomial) Threshold Gate Output-Gated
by Single Linear (or Polynomial) Threshold Gate

How many Boolean functions can we
expressed as the product of two
linear threshold functions?

* Inputs can be 0/1 or -/+ (absorbed
by affine transformation)

 Outputsare0/1 fg=fANDg

 Outputs are-/+ fg=fNXORg



Capacity Of Linear Threshold Gates

C(n,1) £ n?

0.5 n?<C(n,1) T. Cover 1965

S. Muroga (1965)



Capacity Of Linear Threshold Gates

C(n,1) £ n?

0.5 n?<C(n,1) T. Cover 1965

S. Muroga (1965)

C(n,1) = n? (1 +0(1))

Yu. A. Zuev (1989)




Capacity Of Linear Threshold Gates

C(n,1) = n? (1 + o(1))

. (1- 101;n ) n2< C(n,1) < n2

Yu. A. Zuev (1989)

C(n,1) =n?-nlog, n £ O(n)
Kahn, Komlos, Szemeredi (1994)




Capacity Of Polynomial Threshold Gates
d+1

d!

n

C4(n,1) <

P.B. 1988



Capacity Of Polynomial Threshold Gates
d+1

d!

n

Cd(nll) <

P.B. 1988

n
(d 1 1) < Cy(n,1) M. Saks 1993



Capacity Of Polynomial Threshold Gates

P.B. 1988

) <Cy(n,1) M. Saks 1993

(1 + O( 1)) P. Baldi and R. Vershynin. Polynomial threshold functions,
hyperplane arrangements, and random tensors. SIAM Journal
on Mathematics of Data Science (SIMODS), 1, 4, 699-729, URL:
https://epubs.siam.org/toc/sjmdaq/1/3, DOI:
10.1137/19M1257792, (2019).




Single Linear (or Polynomial) Threshold Gate Output-Gated
by Single Linear (or Polynomial) Threshold Gate

How many Boolean functions can we
expressed as the product of two
linear threshold functions?

* Inputs can be 0/1 or -/+ (absorbed
by affine transformation)

 Outputsare0/1 fg=fANDg

 Outputs are-/+ fg=fNXORg



Single Linear (or Polynomial) Threshold Gate Output-Gated
by Single Linear (or Polynomial) Threshold Gate

How many Boolean functions can we

\ expressed as the product of two
linear threshold functions?

* Inputs can be 0/1 or -/+ (absorbed
by affine transformation)

 Outputsare0/1 fg=fANDg

 Outputs are-/+ fg=fNXORg

Answer: 2n?(1+o(1)) upperbound easy; lower bound?




Simple Lemma

Any corner of the hypercube can be isolated from all the other corners
by an affine hyperplane f with large margins (for any 0<M; 0< K ).

f(d) =M f(d) =M f(d) =M f(d) <-M

f(d) <=-M f(c)=K >0 £(d) <-M f(c)=K=0



.OR .OR

folx)  fix) 0 filx) 0 f(x) O 0

ool X

bias n input units 2 attention bias n input units
units

Multiplexing (=Activation Attention)



Single Linear (or Polynomial) Threshold Gate Output-Gated
by Single Linear (or Polynomial) Threshold Gate

fg

f \

* Inputs can be 0/1 or -/+ (absorbed
by affine transformation)

 Outputsare0/1 fg=fANDg

 QOutputs are-/+ fg=fNXORg

|f AND g|= |f OR g|

| f XORg|=| fNXOR g |

Linear Threshold Case:

Capacity is equal to 2n? (1+o(1)) (d=1)
Polynomial Threshold Case:

Capacity is equal to [2n®*1/d!](1+0(1)) (d>1)



* Gating is a computationally efficient mechanism for tapping into
qguadratic activation functions in a sparse way

e Much more work is needed to better understand transformers



Attention weights
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sharing

Input
Fundamental Property: Invariant to O Vectors

permutation of the inputs (!).

Scalars




Single Linear (or Polynomial) Threshold Gate Synaptically-Gated
by Single Linear (or Polynomial) Threshold Gate (all synapses)

Linear Threshold Case:
Capacity is equal to 2n? (1+o(1)) (d=1)

Polynomial Threshold Case:
Capacity is equal to [2n9*1/d!](1+0(1)) (d>1)



Single Linear (or Polynomial) Threshold Gate Synaptically-Gated
by Single Linear (or Polynomial) Threshold Gate (one synapse)

f

g

gEW, .
g Linear Threshold Case:
gWy n2(1+o(1)) £ C < 2n2 (1+0(1)) (d=1)
X
Conjecture: closer to n?
X, X, Polynomial Threshold Case:

[n9+1/d!](1=0(1)) < C < 2 [n¥*1/d!](1=0(1))



Layer of Linear (or Polynomial) Threshold Gates Output-Gated
by a Layer of Linear (or Polynomial) Threshold Gates

Linear Threshold Case:
2mn? (1+o(1)) (d=1)

Polynomial Threshold Case:
2m[n9+1/d!](1+0(1)) (d>1)




Linear (or Polynomial) Threshold Gate Synaptically-Gated
by a Layer of Linear (or Polynomial) Threshold Gates
n%(1+o(1)) £ C < n3(1+o0(1)) (d=1)

W gnwn gl gn
l .
Polynomial Threshold Case:

[n*1/d1](1=0(1)) £ C < 2 [n#*2/d!](1=0(1)) (d>1)

Linear Threshold Case:
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LLM Technology

Autoregressive generative models
Current generation is mostly based on transformers
Language is tokenized and place encoded

LLM: Trained in self-supervised mode to predict the
next word, i.e. the next token

Softmax output= distribution over the vocabulary of
tokens.

At production time, sample from the distribution.
Greedy sampling does not work well. Usually, top k
sampling is used.

Initially trained on text alone

Potentially trained on entire humanity’s knowledge
(far more than any individual human)

Quality of training data matters

Running out of data. LLM generated data. Distillation
Issues.



LLM Technology

Training the Base Model
Aligning the Base Model. Post-training.

Supervised post-training, RLHF (Reinforcement
Learning from Human Feedback)

Prompt engineering. System prompt.
Inference with the Base Model
Reasoning with the Base Mode

To a first order of approximation: reasoning =
rumination.

Multi-modal versions are now common

Can be interfaced with other programs, agents,
and robots



LLM Landscape

Many different LLMsmodels: GPT, CLAUDE,
GEMINI, GROK, DEEPSEEK, LLAMA, MISTRAL,
etc

Available with different flavors, sizes,
reasoning capabilities.

Available under a subscription model or as
“open weights” model (open weight is not
the same thing as open source)

Initially trained on text alone. Currently
multimodal version are common.



LLM Capabilities

e Capable of conversing, translating,
programming, etc.

e Can make errors and hallucinate
* Many benchmarks—Humanity Last Exam
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B ORIGINAL CLINICAL RESEARCH REPORT
Clinical Knowledge and Reasoning Abilities of Al Large
Language Models in Anesthesiology: A Comparative
Study on the American Board of Anesthesiology
Examination

Mirana C. Angel, MSc,*t Joseph B. Rinehart, MD,} Maxime P Cannesson, MD, PhD,§ and
Pierre Baldi, PhD*t

BACKGROUND: Over the past decade, artificial intelligence (Aly has expanded significantly
with increased adoption across various industries, including medicine. Recently, Al-based
large language models such as Generative Pretrained Transformer-3 (GPT-3), Bard, and
Generative Pretrained Transformer-3 (GPT-4) have demonstrated remarkable language capa-
bilities. While previous studies have explored their potential in general medical knowledge
tasks, here we assess their clinical knowledge and reasoning abilities in a specialized
medical context.

METHODS: We studied and compared the performance of all 3 models on both the written
and oral portions of the comprehensive and challenging American Board of Anesthesiology
(ABA) examination, which evaluates candidates’ knowledge and competence in anesthesia
practice.

RESULTS: Our results reveal that only GPT-4 successfully passed the written examination,
achieving an accuracy of 78% on the basic section and 80% on the advanced section. In com-
parison, the less recent or smaller GPT-3 and Bard models scored 58% and 47% on the basic
examination, and 50% and 46% on the advanced examination, respectively. Consequently, only
GPT-4 was evaluated in the oral examination, with examiners concluding that it had a reason-
able possibility of passing the structured oral examination. Additionally, we observe that these
models exhibit varying degrees of proficiency across distinct topics, which could serve as an
indicator of the relative quality of information contained in the corresponding training datasets.
This may also act as a predictor for determining which anesthesiology subspecialty is most
likely to withess the earliest integration with Al

CONCLUSIONS: GPT-4 outperformed GPT-3 and Bard on both basic and advanced sections of
the written ABA examination, and actual board examiners considered GPT-4 to have a reason-
able possibility of passing the real oral examination; these models also exhibit varying degrees
of proficiency across distinct topics. (Anesth Analg 2024;139:349-56)

KEY POINTS

+ Questlon: How might recent advancements in artificial intelligence (Al) large language mod-
els influence the field of anesthesiology?

+ FIndings: Large language models may now be sophisticated enough to pass the anesthesiol-
ogy written and oral examinations.

- Meanlng: The rapid development of these models holds the potential to shape the future of
both anesthesiology education and practice, but we need to be aware of their limitations.

Copyright © 2024 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.

n recent years, artificial intelligence (Al) primarily
in the form of machine learning, in particular deep
learning, has experienced a significant expansion
driven by progress in computational power and big

data availability.? In the medical field, Al's potential
to increase accuracy and expedite diagnoses has led
to its application in numerous areas, including radi-
ology, pathology, and genomics. For example, Al has
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Abstract—This study aimed to assess the performance of Large
Language Models on the North American Veterinary Licensing
Examination (NAVLE) and to analyze the impact of artificial
intelligence in the domain of animal healthcare. For this study,
a 200-question NAVLE self-assessment sourced from ICVA’s
website was used to evaluate the performance of three langunage
models: GPT-3, GPT-4, and Bard. Questions involving images
were omitted leaving a 164 text-only sample exam. Results were
analyzed by comparing generated responses to the answer key,
and scores were assigned to evaluate the models’ veterinary
medical reasoning capabilities. Our results showed that GPT-
4 outperformed GPT-3 and Bard, passing the exam with 89
% of the text-only questions correctly. GPT-3 and Bard only
achieved an accuracy of 63.4 % and 61 % respectively on
the same set of questions. Language models hold promise for
enhancing veterinary practices through expanded educational
opportunities in the veterinary curriculum, improved diagnostic
accuracy, treatment times, and efficiency. However, potential
negatives include challenges in changing the current educational
paradigm, reduced demand for professionals or paraprofessional
concerns surrounding machine-generated decisions. Responsible
and ethical integration of langnage models is crucial in veterinary
medicine,

Index Terms—Artificial Intelligence, LLM, ChatGPT, Bard,
Veterinary Medicine, Medical Education, Societal Impact

I. INTRODUCTION

In recent years, the rapid growth of artificial intelligence
(AI) has significantly influenced various industries, including
healthcare. The development of increasingly powerful Al
models, such as large language models (LLMs) has facili-
tated the automation of diverse tasks and the enhancement
of decision-making processes. Consequently, the adoption of
Al technology has emerged as a pivotal factor in gaining a
competitive edge and boosting efficiency across industries [1].
Here we provide an initial assessment of the applicability of
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LLMs in veterinary medicine by testing their ability to pass a
standard veterinary education test.

The veterinary field encompasses a wide array of profes-
sions and specializations, all dedicated to the care and well-
being of animals. Veterinarians, who are extensively trained
to diagnose and treat various conditions in numerous species
ranging from domesticated animals and livestock to wildlife,
are a cornerstone of this field. As the veterinary field continues
to evolve, new technologies and techniques are revolutionizing
the diagnosis and treatment of animal health issues [2].

The advent of diverse Al technologies, such as state-of-the-
art text, sound, image, and video data analysis algorithms, have
significantly advanced veterinary medicine in areas such as
disease diagnosis, treatment planning, and precision medicine
[2, 3, 4]. However, current Al models are typically task-
specific and lack the capability for independent medical rea-
soning [5]. This limitation has prompted researchers to explore
the potential of large language models, which have demon-
strated remarkable cognitive reasoning abilities, in addressing
these shortcomings in all fields.

Among large language models, Generative Pre-trained
Transformer (GPT) and Bard have emerged as frontrunners,
exhibiting outstanding performance in various applications [6,
7, 8]. GPT-3 and GPT-4, as well as Bard, adopt the decoder-
only architecture of the transformer model [9]. GPT-3 en-
compasses 175 billion parameters and showcases remarkable
versatility across a range of tasks. In an advancement over
GPT-3, GPT-4 boasts an unprecedented one trillion parameters,
addressing many of the limitations previously associated with
GPT-3. Both GPT iterations were pre-trained on extensive text
corpora and subsequently fine-tuned for specialized tasks [6,
7.

Concurrently, Google’s Bard initially employed the Lan-
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Highlights

» Evaluated cognitive performance of popular LLMs using verbal and
visual IQ tests.

» Found a positive correlation between LLM size and cognitive
performance across tasks.

» Significant performance variability across problem types suggests
nuanced differences in reasoning.



LLM Capabilities

More or less pass the Turing test

Recently: >50% on HLE (GROK); gold medal
math Olympiad (Gemini; GPT)

Can LLM achieve AGI? SI?

Argument against: stochastic parrots, no
knowledge of the real world.

Argument for: keep rapidly beating all
benchmarks. The case of Helen Keller...




Conclusion

e Taxonomy of elementary building blocks for attention

* Output gating and synaptic gating extend the SM towards the space of
qguadratic activations without incurring the full cost

e Output gating and synaptic gating are used in all the existing attention
based architectures, including transformers (output gating alone is enough)

* Transformer have permutation invariance properties which are attractive
for applications beyond NLP (physics, chemistry)

 Mathematical theory of attention capacity (efficient mechanism to tap into
guadratic activations)

* LLMs pass the Turing test
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