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What is Attention?

``Everyone knows what attention is... It is the taking possession by the 
mind in clear and vivid form, of one out of what seem several 
simultaneously possible objects or trains of thought...'' William James, 
Principles of Psychology (1890).

“the ability to focus selectively on a selected stimulus, sustaining that 
focus and shifting it at will‘’ 

``the concentration of awareness on some phenomenon to the 
exclusion of other stimuli''.
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Neurobiology of Attention
• The word “attention” is an inadequate, singular term for a multitude 

of inter-related processes. We use a host of adjectives to describe 
attention—for example, we say that attention can be divided, 
oriented, sustained, or focused, and many of these descriptions 
likely reflect underlying, dissociable neural processes. Complicating 
matters, attentional resources can be allocated to either external 
stimuli, or to internal stimuli such as thoughts and memories. 
Furthermore, we often confuse the regulation of attention (a covert 
behavior) with the regulation of movement (an overt behavior) when 
discussing an “attentional disorder”.

 [Arnsten and Castellanos. Neurobiology of attention regulation and its  
disorders, Pediatric Psychopharmacology, 2010].

 Focus on the most basic building blocks of what attention may be 
in artificial neural networks (the Standard Model). 



The Standard Model

O=f(∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)
Basic elementary operations: 
1) Activation S= Dot product  x.w 
2) Output O=f(S)  (f linear or non-linear activation function)

• SM universal 
approximation properties

•   SM extensions (softmax, 
polynomial activations, 
product of outputs, ….)
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Attention in DL and NLP applications

Sequence to sequence models



Attention Mechanisms in DL and NLP

Various formulations: 
• Content-base attention Graves et al., 2014
• Dot-Product attention Luong et al., 2015
• Additive attention Bahdanau et al., 2015 
• Vaswani et al. 2017
• ………..
• Transformer Architectures
• Standard modules in DL packages (TensorFlow, PyTorch)
• Google’s BERT, OpenAI’s GPT , XLNet ….

https://blog.floydhub.com/gpt2/
https://blog.floydhub.com/gpt2/


The Transformer Model is entirely 
built on the self-attention 
mechanisms, without using sequence-
aligned recurrent architectures.
Every input element has three 
learnable vectors: Query (Q), Key (K), 
and Value (V)

Rather than only computing the 
attention once, the multi-head 
mechanism runs through the scaled 
dot-product attention multiple times in 
parallel.

‘Ensemble’ multiple 
attention in parallel

Transformer Model & (self)-attention
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The Standard Model

O=f(∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)
Basic elementary operations: 
1) Activation S= Dot product  x.w 
2) Output O=f(S)  (f linear or non-linear activation function)

3 variable types:
S, O, w



Classification of Attention Mechanisms 
(or Extensions of the SM)

• In the SM, there are 3 types of variables: S (activation), O (output), 
and w (synaptic weights).

• Attention signals can be classified according to their attending Origin, 
their attended Target, and the underlying Mechanism.

•  With two mechanisms, addition and multiplication, this corresponds 
to 18 possibilities:

• Multiplicity issues.
• Origin: only of type O  6 possibilities. 

S O W

S +, x +, x +, x

O +, x +, x +, x

W +, x +, x +, x



Classification of Attention Mechanisms

Activation (S) Output (O) Weight (w) 

Addition Activation Attention 
(SM)

Multiplication Output Gating Synaptic Gating

• Origin is of type O
• Six possibilities:

Target

Mechanism



Output Gating Synaptic Gating
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Database Vocabulary

Student ID Driver License # Address First Name Last Name

123456

123789

123770

123775

Key

Query: 
123770?

Values=
Rows
Contents



Q K V Q K V Q K V

Input …

…

X X X

Vectors

Scalars

Output

Attention weights …
Query
Key
Value

Weight 
sharing

All Q-K 
combinations

Fundamental Property: equivariant to 
permutation of the inputs (!). 



Attention Enables Computing the Dot Product of 
the Activities of Two Layers of the Same Size
(output or synaptic gating) 

v1 v2     vn pairwise gating layer

gated output
O= ∑𝑥𝑥𝑖𝑖𝑣𝑣i 

x1 x2       xn

1 1

[Can be used to derive alternative proof of universal 
approximation properties for SM + attention]



Softmax Attention=Dot Product with Softmax 
(output or synaptic gating)

Y1  y2     yn

v1 v2     vn gating layer:
softmax unit
vi=exp yi / sumj exp vj

gated output
O=sumi vi xi

x1 x2       xn

1 1

Attention in NN is based on the ability to compute and fast-store variable-length 
dot products. 
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Physics Applications

• Tagging Extreme Jets
• Jet Parton Matching
• Neutrino Classification
• Neutron Stars EoS

Chemistry Applications
• Prediction of Chemical Reactions



Small Molecule Representations

NC(CO)C(=O)O

O

OH
NH2

OH

0010001001010001

Problem: molecular 
graphs are undirected



Deep Learning Chemical Reactions

A+B  C+D

RCH=CH2 + HBr → RCH(Br)–CH3

Amin Tavakoli

David Fooshee, Aaron Mood, Eugene Gutman, Amin Tavakoli, Gregor Urban, 
Frances Liu, Nancy Huynh, David Van Vranken, and Pierre Baldi.  Deep Learning 
for Chemical Reaction Prediction. Molecular Systems Design & Engineering, Royal 
Society of Chemistry, 3, 442 – 452, (2018).





• Primary (all-hadronic) decay channel produces six particles - two 𝑞𝑞𝑞𝑞𝑞𝑞 triplets with opposite charge – originating 
from the top – antitop particle pair which we wish to reconstruct.

• After these particles are produced, they are propagated and measured by the detector as jets.
• Along with the jets from each of the particles, there may be additional jets from other decay products.

This is a difficult matching problem: Observing the jets from the 
detector, can you determine which jets belong to which particles?
Effective matching requires exploiting the symmetries in this problem! 

{𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, 𝑗𝑗4, 𝑗𝑗5, 𝑗𝑗6, 𝑗𝑗7, 𝑗𝑗8}

{𝑏𝑏, 𝑞𝑞′,∅, 𝑞𝑞′, 𝑏𝑏′,∅, 𝑞𝑞, 𝑞𝑞}

Match Jets to Particle Labels

Garbage Jets

SPANet Jet-Parton Matching in LHC Top Quark Decays

Theoretical 
Parent Particles
To Reconstruct

Final Particles
Observed As 

Jets



Heavily employ attention in 
several sections within our 
network for context-aware 
permutation-invariant learning. 

Event-level 
context-aware 

encoding

Particle-level 
encoding

Symmetric jet 
matching

Tensor attention to predict the 
most likely assignment of jets 
associated with each particle.

Input is unsorted set of jet 
4-momentum vectors.

Split the information stream into 
a finite collection of “particles”. 

SPANet Complete Architecture

Attention Use

Construct an architecture following the structure of the original 
Feynman Diagram with attention as its core operation.



• We compare SPANet to a classical permutation-based method  based on 𝜒𝜒2 probability of assignments. 
• SPANet uses attention to match all top-quarks while the 𝜒𝜒2 method needs to compute many jet-permutations.
• SPANet reduces the runtime from 𝑂𝑂(𝑁𝑁6) to 𝑂𝑂(𝑁𝑁3) while increasing efficiency by ~30% across the board.

Runtime on 8 jet events
𝜒𝜒2         : 369 ms per event
Spatter : 4.4 ms per event

SPANet Results

Michael James Fenton, Alexander Shmakov, Ta-Wei 
Ho, Shih-Chieh Hsu, Daniel Whiteson, and Pierre 
Baldi. Permutationless many-jet event 
reconstruction with symmetry preserving attention 
networks. Physical Review D, in press.Alexander Shmakov



• General formulation allows us to extend this technique to virtually any possible event at the LHC.
• Split particle paths and symmetric attention may be extended to match jets in incomplete events – where one 

or more particles are missing due to detector loss, allowing us to use more training data.
• Extended this technique to two other, more complicated, events at the LHC: 𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.
• 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Event is so complex and large that the 𝜒𝜒2 method cannot be tractably computed! 

SPANet Results

𝒕𝒕𝒕𝒕𝒕𝒕

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

Alexander Shmakov, Michael James Fenton, Ta-Wei Ho, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi. SPANet: Generalized 
Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention. SciPost Physics, in press.



x5000



The problem
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Mass-Radius
relation

(2 params: M,R)

Neutron Star 
X-ray data

(1024 chan,80% empty)

Training data 
Fixed EOS, sample of (M,R) pairs
For each M,R pair, add 3 nuisance param

generate sample spectra

add Nuis P

Star parameters
2 params: (mass, radius)

3 nuis params (dist, temp, dust)

XSPEC Sim

Inference 
End-to-end: spectra -> EOS 
Also might try: spectra-> star

star -> EOS

https://arxiv.org/abs/2002.04699

Jordan Ott



Prediction of EOS coefficients 
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Cardinal  Capacity

• h = target function (typically known from examples)
• A =  class of hypothesis or approximating functions (typically associated with a NN 

architecture)
h

A

C(A) = log2 |A|

• Average number of bits required 
to specify a function in A. 

• In a neural architecture, number 
of bits that must be transferred 
from the data to the synapses 
during learning

P. Baldi and R. Vershynin. The 
capacity of feedforward neural 
networks. Neural Networks, 
116, August 2019, Pages 288-
311, (2019). Also: Arxiv 
1901.00434.



Single Linear (or Polynomial) Threshold Gate Output-Gated 
by Single Linear (or Polynomial) Threshold Gate

x1 xn

f g

fg

• Inputs can be 0/1 or -/+ (absorbed 
by affine transformation)

• Outputs are 0/1    fg= f AND g
• Outputs are -/+    fg = f NXOR g

How many Boolean functions can we 
expressed as the product of two 
linear threshold functions?



Capacity Of Linear Threshold Gates

       C(n,1) ≤  n2

                   
   0.5 n2 ≤ C(n,1)                      T. Cover 1965

S. Muroga (1965)
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                       C(n,1) =  n2 (1 + o(1))

     Yu. A. Zuev (1989)



Capacity Of Linear Threshold Gates

                    
 C(n,1) =  n2 (1 + o(1))

•  (1- 10
log 𝑛𝑛

 ) n2 ≤ C(n,1) ≤ n2

      Yu. A. Zuev (1989)
 

•  C(n,1) = n2 –n log2 n  ± O(n)
 Kahn, Komlos, Szemeredi (1994)



Capacity Of Polynomial Threshold Gates

  Cd(n,1) ≤ 
 𝑛𝑛𝑑𝑑+1

𝑑𝑑!
 

       P.B. 1988 
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Capacity Of Polynomial Threshold Gates

  Cd(n,1) ≤ 
 𝑛𝑛𝑑𝑑+1

𝑑𝑑!
 

       P.B. 1988 

               
𝑛𝑛

𝑑𝑑 + 1  ≤ Cd(n,1)           M. Saks 1993

                    C(n,d) = 
 𝑛𝑛𝑑𝑑+1

𝑑𝑑!
 (1 + o(1))

       

P. Baldi and R. Vershynin. Polynomial threshold functions, 
hyperplane arrangements, and random tensors. SIAM Journal 
on Mathematics of Data Science (SIMODS), 1, 4, 699-729, URL: 
https://epubs.siam.org/toc/sjmdaq/1/3 , DOI: 
10.1137/19M1257792, (2019).
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Single Linear (or Polynomial) Threshold Gate Output-Gated 
by Single Linear (or Polynomial) Threshold Gate

x1 xn

f g

fg

• Inputs can be 0/1 or -/+ (absorbed 
by affine transformation)

• Outputs are 0/1    fg= f AND g
• Outputs are -/+    fg = f NXOR g

How many Boolean functions can we 
expressed as the product of two 
linear threshold functions?

Answer: 2n2(1+o(1))               upperbound easy; lower bound?



Simple Lemma

Any corner of the hypercube can be isolated from all the other corners 
by an affine  hyperplane f with large margins (for any 0<M; 0≤ K ).

f(c)=K=0f(c)=K >0

f(d) ≤-M f(d) ≤-M f(d) ≤-Mf(d) ≤-M

f(d) ≤-M f(d) ≤-M



f1(x) f2(x) f3(x) 00 0f1(x)

1101

n input units n input unitsbias bias 2 attention 
units

f0(x)

OR OR

Multiplexing (=Activation Attention)



Single Linear (or Polynomial) Threshold Gate Output-Gated 
by Single Linear (or Polynomial) Threshold Gate

x1 xn

f g

fg • Inputs can be 0/1 or -/+ (absorbed 
by affine transformation)

• Outputs are 0/1    fg= f AND g
• Outputs are -/+    fg = f NXOR g

|f AND g|= |f OR g| 
| f XOR g|= | f NXOR g |
Linear Threshold Case: 
Capacity is equal to  2n2 (1+o(1))    (d=1)
Polynomial Threshold Case:
Capacity is equal to  [2nd+1/d!](1+o(1))  (d>1)



• Gating is a computationally efficient mechanism for tapping into 
quadratic activation functions in a sparse way 

• Much more work is needed to better understand transformers



Q K V Q K V Q K V

Input …

…

X X X

Vectors

Scalars

Output

Attention weights …
Query
Key
Value

Weight 
sharing

All Q-K 
combinations

Fundamental Property: Invariant to 
permutation of the inputs (!). 



x1 xn

ggw1

gwn

fg

Linear Threshold Case:
Capacity is equal to  2n2 (1+o(1))    (d=1)

Polynomial Threshold Case:
Capacity is equal to  [2nd+1/d!](1+o(1))  (d>1)

Single Linear (or Polynomial) Threshold Gate  Synaptically-Gated 
by Single Linear (or Polynomial) Threshold Gate (all synapses)



Single Linear (or Polynomial) Threshold Gate Synaptically-Gated 
by Single Linear (or Polynomial) Threshold Gate (one synapse)

x1 xn

ggw1

gwn

fg

Linear Threshold Case:
n2(1+o(1)) ≤ C  ≤ 2n2 (1+o(1))    (d=1)

Conjecture: closer to n2

Polynomial Threshold Case:
[nd+1/d!](1=o(1)) ≤ C ≤ 2 [nd+1/d!](1=o(1))  



Layer of  Linear (or Polynomial) Threshold Gates Output-Gated 
by  a Layer of Linear (or Polynomial) Threshold Gates

x1 xn

h1
g1

gmhm

Linear Threshold Case:
2mn2 (1+o(1))    (d=1)

Polynomial Threshold Case:
2m[nd+1/d!](1+o(1))   (d>1)



x1 xn

g1 gn
g1w1 gnwn

Linear (or Polynomial) Threshold Gate Synaptically-Gated 
by  a Layer of Linear (or Polynomial) Threshold Gates

Linear Threshold Case:
n2(1+o(1)) ≤ C  ≤ n3 (1+o(1))    (d=1)
Polynomial Threshold Case:
[nd+1/d!](1=o(1)) ≤ C ≤ 2 [nd+2/d!](1=o(1))  (d>1) 
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LLM Technology
• Autoregressive generative models
• Current generation is mostly based on transformers
• Language is tokenized and place encoded
• LLM: Trained in self-supervised mode to predict the 

next word, i.e. the next token
• Softmax output= distribution over the vocabulary of 

tokens. 
• At production time, sample from the distribution. 

Greedy sampling does not work well. Usually, top k 
sampling is used. 

• Initially trained on text alone 
• Potentially trained on entire humanity’s knowledge 

(far more than any individual human)
• Quality of training data matters
• Running out of data.  LLM generated data. Distillation 

issues. 



LLM Technology
• Training the Base Model
• Aligning the Base Model. Post-training.
• Supervised post-training, RLHF (Reinforcement 

Learning from Human Feedback) 
• Prompt engineering. System prompt.
• Inference with the Base Model
• Reasoning with the Base Mode 
• To a first order of approximation: reasoning = 

rumination. 
• Multi-modal versions are now common
• Can be interfaced with other programs, agents, 

and robots
 



LLM Landscape
• Many different LLMsmodels: GPT, CLAUDE, 

GEMINI, GROK, DEEPSEEK, LLAMA, MISTRAL, 
etc

• Available with different flavors, sizes, 
reasoning capabilities.

• Available under a subscription model or as 
“open weights” model (open weight is not 
the same thing as open source) 

• Initially trained on text alone. Currently 
multimodal version are common.



LLM Capabilities

• Capable of conversing, translating, 
programming, etc. 

• Can make errors and hallucinate
• Many benchmarks—Humanity Last Exam



Other example of application:   Pharmacy Automation







Clinical Knowledge and Reasoning Abilities of AI Large Language Models in 

Anesthesiology: A Comparative Study on the ABA Exam  

 

Mirana C. Angel MSc1,2, Joseph B. Rinehart MD3, Maxime P. Canneson MD PhD4, Pierre Baldi 

PhD1,2,* 

1. Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA 

2. Institute for Genomics and Bioinformatics, University of California Irvine, Irvine CA 92697, USA 

3. Department of Anesthesiology & Perioperative Care, University of California Irvine, Irvine CA 92697, USA 

4. Department of Anesthesiology & Perioperative Medicine, University of California, Los Angeles, Los 

Angeles, CA 90095 





LLM Capabilities

• More or less pass the Turing test 
• Recently: >50% on HLE (GROK); gold medal 

math Olympiad (Gemini; GPT)
• Can LLM achieve AGI? SI?
• Argument against: stochastic parrots, no 

knowledge of the real world.
• Argument for: keep rapidly beating all 

benchmarks. The case of Helen Keller…



Conclusion

• Taxonomy of elementary building blocks for attention
• Output gating and synaptic gating extend the SM towards the space of 

quadratic activations without incurring the full cost
• Output gating and synaptic gating are used in all the existing attention 

based architectures, including transformers (output gating alone is enough)
• Transformer have permutation invariance properties which are attractive 

for applications beyond NLP (physics, chemistry)
• Mathematical theory of attention capacity (efficient mechanism to tap into 

quadratic activations)
• LLMs pass the Turing test



THANK YOU

Cambridge University Press
TOC and sample chapters on 
my web site.
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