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Course

Is about recent advances in graph learning. 

With an emphasis on the expressive power of  learning methods. 

Self-contained (too some extent). 

Mostly high-level, but also low-level, so basically all levels. 

Not all methods or related works are covered. 

Emphasis on theoretical aspects.
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About the speaker

Background in mathematics, database theory and expressive power of  
query languages. 

Since 2018, expressive power of  linear algebra. 

Natural move to the study of  expressive power of  graph neural 
networks. 

Current focus is on generalisation and relational learning.
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Outline
Graph learning and expressive power 

Message Passing Neural Networks 

Boosting power: 

Feature augmentation 

Subgraphs 

Higher-order message-passing ?Ask Questions

Indebted to Fabrizio Frasca, Beatrice Bevilacqua and Haggai Maron: Shamelessly  :-)  borrowed parts of  their tutorial on expressive of  GNNs at LOG 2022
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Graph learning
What is it?
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Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Why learning on graphs?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

2/16/2023

Images: Machine Learning on Graphs,Course by Jure Leskovec

Graphs are everywhere!
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Graphs: One definition to rule them all

Graph  with  

Vertex set  

Edge set  

Vertex labels: 

G = (VG, EG, LG)

VG

EG ⊆ V2
G := VG × VG

LG : VG → Σ

ℝdVertex features Hot-one encoding

Image: Wikipedia
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Adjacency matrix representation
Graph  can also be represented by adjacency matrix 

 and feature matrix  

Let  be the number of  vertices. Let . 

G = (VG, EG, LG)
AG FG

n = |VG | v, w ∈ [n] := {1,…, n}

adjacency matrix AG ∈ ℝn×n : (v, w) ↦ {1 (v, w) ∈ EG
0 otherwise

feature matrix FG ∈ ℝn×d : v ↦ LG(v)

To turn graph into matrix, one needs an ordering on the vertices.
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Graph learning

𝒢 =  all graphs 𝕐 =  output space

Embedding method
ℝd

…

Classical ML
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Embeddings

Graph embedding:  

Vertex embedding:  

-Vertex embedding:   

ξ : 𝒢 → 𝕐

ξ : 𝒢 → (𝒱 → 𝕐 )

p ξ : 𝒢 → (𝒱p → 𝕐 )

𝒢 =  all graphs
𝒱 =  all vertices
𝕐 =  output space
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Graph embeddings
Graph embedding:  

Graph classification/regression

ξ : 𝒢 → 𝕐

Toxic

Non toxic

ξ(G)
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Vertex embeddings
Vertex embedding:  

Vertex classification/regression. For example, prediction of  subject 
of  papers.

ξ : 𝒢 → (𝒱 → 𝕐 )

paper1 → math
paper2 → computer science

⋮ ⋮ ⋮
papern → biology

→

Images: Cora dataset

ξ(G, v)
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p-Vertex embeddings
-Vertex embedding:   

For example, 2-vertex embeddings: link prediction 

p ξ : 𝒢 → (𝒱p → 𝕐 )

( Joe, Anna)
(Paolo, Mohammed)→

ξ(G, v, w)

…

↦
↦

link
no link
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Graph learning tasks

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

Node level

Edge-level

Community 
(subgraph)
level

Graph-level 
prediction,
Graph 
generation

Image: Machine Learning on Graphs, course Jure Leskovec

Graph level

Vertex level

Subgraph level

Edge/link level
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 a

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 40

Many patients take multiple drugs to treat 
complex or co-existing diseases:

 46% of people ages 70-79 take more than 5 drugs
 Many patients take more than 20 drugs to treat 

heart disease, depression, insomnia, etc.
Task: Given a pair of drugs predict 

adverse side effects

,

Prescribed 
drugs

Drug
side effect

30% 
prob.

65% 
prob.

36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs2/16/2023

Applications
Vertex classification: categorise online user/items, 
location amino acids (protein folding, alpha fold) 

Link prediction: knowledge graph completion, 
recommender systems, drug side effect discovery 

Graph classification: molecule property, drug 
discovery 

Subgraph tasks: traffic prediction

Computationally predict a protein’s 3D structure 
based solely on its amino acid sequence

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Image credit: DeepMind

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

Items

Users

 Users interacts with items
▪ Watch movies, buy merchandise, listen to music
▪ Nodes: Users and items
▪ Edges: User-item interactions

 Goal: Recommend items users might like

2/16/2023

Interactions

“You might also like”
Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2
< 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

2/16/2023

 Antibiotics are small molecular graphs
▪ Nodes: Atoms
▪ Edges: Chemical bonds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Images: Machine Learning on Graphs, course by Jure Leskovec

GRAPH 
LEARNING HAS 
BECOME KEY 

DATA 
SCIENCE 

COMPONENT
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Graph learning

We want to learn an unknown embedding Ξ : 𝒢 → (𝒱p → 𝕐 )

What does this mean???

The embedding  is partially revealed by means of  a training set Ξ

𝒯 := {(G1, v1, y1), …, (Gℓ, vℓ, yℓ)} ⊆ 𝒢 × 𝒱p × 𝕐

Ξ(G1, v1) Ξ(Gℓ, vℓ)
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Training sets

Ingredient #1: Training set

We want to learn � ∶ G → (Vp → Y) but we may only partially know this embedding ...

� Partial knowledge of � is revealed through a training set

T = ��G1,v1,�(G1,v1)�, . . . , �G¸,v¸,�(G¸,v¸)�� ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)

16 / 78Graph classification Vertex classification Link prediction
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Graph learning: hypothesis class

We want to find the best model consistent with training set 𝒯

What does this mean???

Models are selected from an hypothesis class  

In the graph setting  consists of  embeddings

ℋ

ℋ

18



Hypothesis classes

1000×

ℋ

2-IGN
MPNN

Graphormer

k-SAN

PPGN

CWN GIN

GSN

ChebNet Dropout GNN

CayleyNet

Id-aware GNN

GATs
GCNs

GraphSagek-IGNs

GNNsδ − k−

k-GNNs

19



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13
2/16/2023
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Hypothesis Class Explosion

Images: Machine Learning on Graphs, course J. Leskovec

Count

Large Language Models 318

Reinforcement Learning 201

Graph Neural Networks 123

Diffusion Models 112

Deep Learning 110

Representation Learning 107
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What’s new?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0 (0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network 

Support vector machines 

…

𝒢 𝕐 = ℝ101
2

3
4

5

:-(Different representation  different result⇒
permuted adjacency 

matrices

0 1 0 1 0
1 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

1
2

3
4

5

1
2

3
4

5

(0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0)

(0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0)

Images: flaticon.com, Noun project

flatten
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Graph learning

𝒢 =  all graphs 𝕐 =  output space

Invariant 
Embedding method

ℝd

…

Classical ML

Classical embedding methods depend on representation 

E.g., think of  MultiLayerPerceptron on vector representation of  flattened 
adjacency matrix 

22



A desired property: Invariance
Embeddings should be invariant, that is, independent of  the chosen 
graph representation. 

Invariance is defined in terms of  graph isomorphisms.

1

2

34

5

A

B

CD

E

π : VG → VH

G = (VG, EG) H = (VH, EH)

The mapping  is a bijective vertex function satisfying  
 also  must hold.

π
(v, v′ ) ∈ EG ⟺ (π(v), π(w)) ∈ EH LG(v) = LH(π(v))

G ≅ H

23



Invariant embeddings

1
2

34

5

A

B

CD

E

for all π, G and v ∈ Vp
G : ξ(G, v) = ξ(π(G), π(v))

(1,4) and (B,C) have same embedding in 𝕐

π

We typically assume invariant embedding methods (unless said otherwise)

Isomorphism 

24



Graph learning: ERM

Given training set  and hypothesis class  

Empirical risk minimisation: 

Find embedding  in  which minimises empirical loss   

𝒯 ℋ

ξ ℋ
1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

Loss function is a mapping from 𝕐 × 𝕐 → ℝ

ℋ

ξBest one!

25



Loss functions

L1:  

L2:  

(Binary) cross entropy: 

𝗅𝗈𝗌𝗌(ypredicted, ytrue) := |ypredicted − ytrue |

𝗅𝗈𝗌𝗌(ypredicted, ytrue) := (ypredicted − ytrue)2

𝗅𝗈𝗌𝗌(ypredicted, ytrue) := ytrue log(ypredicted + (1 − ytrue)log(1 − ypredicted)

Choice depends on learning task (regression, classification,…)

26



Graph learning

Graph learning systems solve ERM using back propagation and 
gradient descent… 

̂ξ : arg min
ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

27



What one really wants
Simply predicting labels for training data is insufficient. 

We want to predict labels for graphs not in the training data. 

We will assume the presence of  distribution  over .𝒟 𝒢 × 𝕐

We do not know the true distribution , as it represents real-world unseen data. 𝒟

28



Risk minimisation 
Risk minimisation: Find embedding  in  which minimises 
expected loss over :   

ξ̃ ℋ
𝒟

ξ̃ := arg min
ξ∈ℋ

Prob(G,y)∼𝒟[ξ(G) ≠ y]

RM focuses on minimising errors over all the data according to their 
distribution. 
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Generalisation Error
We want to find a hypothesis  that does well on the training 
data (small empirical loss ) 

But also has small expected loss 

ξ ∈ ℋ
L𝒯(ξ)

L𝒟(ξ)

We want the generalisation error   to be small. 

Statistical learning theory provides bounds on training data 
guaranteeing small generalisation error. 

L𝒟(ξ) − L𝒯(ξ)

30



Generalisation error
We want the generalisation error   to be small. L𝒟(ξ) − L𝒯(ξ)

31

For , with probability  (in our selection of  training data 
 of  size ) for all                                       

 

where  is the VC dimension of   

δ > 0 1 − δ
𝒯 m ξ ∈ ℋ :

L𝒟(ξ) − L𝒯(ξ) ≤
2d log( em

d )
m

+
log( 1

δ )
2m

d ℋ

Theorem  (Vapnik and Chervonenkis 1964)

Vladimir Vapnik and Alexey Chervonenkis: The uniform convergence of  frequencies of  the appearance of  events to their probabilities (1964) 



Graph learning

Graph learning systems solve ERM using back propagation and 
gradient descent… 

̂ξ : arg min
ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

Our focus will be on the expressive power of  hypothesis classes ℋ
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Expressive power

Which embeddings can be expressed by embeddings in ? 

Which embeddings can be approximated by embeddings in ? 

Which inputs can be separated/distinguished by embeddings in ? 

What is the relationship between expressiveness and generalisation 
of  ?

ℋ

ℋ

ℋ

ℋ
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Notions of  expressivity

 can express  if  there exists a  such that for all    ℋ Ξ ξ ∈ ℋ G ∈ 𝒞, v ∈ Vp
G :

ξ(G, v) = Ξ(G, v)

Let  be a -vertex embeddingΞ : 𝒢 → (𝒱p → 𝕐 ) p

Let  indicator function for connected graphs. 

Can we find hypothesis in  such that  for all graphs  

Ξ : 𝒢 → {0,1}

ξ ∈ ℋ ξ(G) = Ξ(G) G

34



Notions of  expressivity

Separation/distinguishing power of   

    

All pairs of  inputs that cannot be separated by any embedding in 

ℋ

ρ(ℋ) := {(G, v, H, w) ∣ ∀ξ ∈ ℋ : ξ(G, v) = ξ(H, w)}

ℋ

Can we find hypothesis in  such that   for any 
connected graph  and disconnected graph ? 

ξ ∈ ℋ ξ(G) ≠ ξ(H)
G H

35



Distinguishing power

Strongest power:  powerful 
enough to detect non-isomorphic 
graphs 

Weakest power:  cannot 
differentiate any two graphs

ℋ

ℋ

Expressive

Expressive ρ(ℋ)

ρ(ℋ)
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Distinguishing power

ρ(methods1) ⊆ ρ(methods2)

Methods1 is more powerful than Methods2 
 Methods 2 is bounded by Methods 1 in power

ρ(methods1) = ρ(methods2)
Both methods are as powerful

Allows for comparing different classes of  embeddings methods!

Allows for comparing embedding methods with algorithms, logic, …
37



Expressive power in ML community

Focus has been on distinguishing power of  classes of  embedding 
methods. 

Goal is to characterise  in a way to sheds light on what graph 
properties a learning method can detect/use. 

We see an example shortly for the class of  Message-Passing Neural 
Networks (MPNNs) 

Recent work addresses uniform expressiveness.

ℋ

ρ(ℋ)

ℋ =

38



Expressive power in ML community

Search for increase in expressive 
power has led to surge of  new 
methods of  graph learning. 

Despite theoretical underpinning…
still a bit of  alchemy to find the right 
method…
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ℋ
Complexity

Ex
pr
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en
es

s

We will gradually fill in this landscape 
 with graph learning methods
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Questions?
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Message Passing Neural Networks
(Still) the most popular type of  Graph Learning Architecture
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A little graph embedding history
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Message passing neural networks

𝒢 =  all graphs 𝕐 =  output space

MPNNs
ℝd

…

Classical ML

A class of  invariant vertex and graph embedding methods

Scarcelli et al.: The graph neural network model (2005), 
Hamilton et al.: Inductive representation learning on large graphs (2017) 
Gilmer et al.: Neural message passing for quantum chemistry (2017)

Invariant by design 

44



Idea behind MPNNs: Neighbour aggregation
Intuition:Network neighborhood defines a 
computation graph

Jure Leskovec, Stanford University 19

Every node defines a computation 
graph based on its neighborhood!

Intuition:Network neighborhood defines a 
computation graph

Jure Leskovec, Stanford University 19

Every node defines a computation 
graph based on its neighborhood!

Every vertex defines a computation graph

Neural networks

Images: Machine Learning on Graphs, Course by Jure Leskovec
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MPNNs: Vertex embedding
ξ(G, v) := ξ(L) ∘ ξ(L−1) ∘ ⋯ ⋅ ∘ ξ(0)(G, v)

Message Passing Layers

Message Passing between  and its 
neighbours 

v
u ∈ NG(v)

Update and aggregate function contain 
learnable parameters (NNs)

ξ(0)(G, v) := Hot-one encoding of label of vertex v

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t−1)(G, u) ∣ u ∈ NG(v)}}))“Inductive biases” and upsides of MPNNs

• Sparse computation
• Linear complexity1

• Locality

1in the number of edges.

• Equivariant (layers)

• Invariant (whole)

13

∈ ℝd

∈ ℝd

ξ(i)(G, v) ∈ ℝd

neighbourhoods

46



MPNNs: Graph embedding
ρ(G) := ρ ∘ ξ(L) ∘ ξ(L−1) ∘ ⋯ ⋅ ∘ ξ(0)(G, v)

Readout

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})
Has learnable parameters

Typical choices for update, aggregate and readout: Multilayer Perceptrons

Aggregation over all vertices

∈ ℝd

47



MPNN example: GNN 101
Non-linear activation function  (ReLU, sign, sigmoid, …) 

 denotes embedding of  vertex  

Weight matrices  and  and bias vector 
 

σ

F(t)
v∙ ∈ ℝd v

W(t)
1 ∈ ℝd×d W(t)

2 ∈ ℝd×d

b ∈ ℝ1×d

F(0)
v∙ := LG(v)

F(t)
v∙ := σ (F(t−1)

v∙ W(t)
1 + ∑u∈NG(v) F(t−1)

u∙ W(t)
2 + b(t))

F(t) := σ (F(t−1)W(t)
1 + AF(t−1)W(t)

2 + B(t))
Image: TheAiEdge.io

Embedding vertex labels

Aggregation over 
neighboursMatrix form

adjacency matrix48



GNN 101: Graph embedding

Weight matrix  and and bias vector W ∈ ℝd×d b ∈ ℝ1×d

F(t) := σ ∑
v∈VG

F(L)W + b

ERM: Find best parameters  W(1)
1 , …, W(L)

1 , W(1)
2 . …, W((L)

2 , W, b(1), …, b(L), b

Aggregation over all 
vertices

49



Two more examples of  MPNNs
Graph Isomorphism Networks (GIN) 

Graph Convolution Network (GCN)

GIN: Xu et al.: How powerful are graph neural networks? (2019) 
GCN: Kipf  and Welling: Semi-supervised classification with graph convolutional networks (2017)

F(t)
v∙ := 𝖬𝖫𝖯(t) ((1 + ϵ(t))F(t−1)

v∙ + ∑u∈NG(v) F(t−1)
u∙ )

F(t)
v∙ := 𝖬𝖫𝖯(t) ( 1

|NG(v) | + 1
∑u∈NG(v)∪{v}

1
|NG(u) | + 1

F(t−1)
u∙ )

50



MPNNs: Expressive power
What is ρ(MPNNs)?

Recall: All pairs of  graphs  such that all MPNNs return same  
graph embedding on both graphs.

(G, H)

A short detour to graph isomorphism testing

Understanding  translates in understanding power of  
GNN 101, GCNs, GINs, …. 

ρ(MPNNs)
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MPNNs and isomorphic graphs
Because of  invariance: MPNNs embed isomorphic graphs in the 
same way. That is, if   

Can MPNNs embed non-isomorphic graphs differently?

G ≅ H ⇒ (G, H) ∈ ρ(MPNN)

𝒢

Equivalence class of  
Isomorphic graphs

𝕐

MPNN

Graph learning task
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The graph isomorphism problem

Given two graph  and : are they 
isomorphic? Or is   

Does there exist a graph isomorphism ? 

Theory: computational complexity is open. 

Quasi-polynomial algoritm  by László Babai (2016). 

Practice: very fast tests.

G = (VG, EG, LG) H = (VH, EH, LH)
G ≅ H?

π : VG → VH

nlog(n)𝒪(1)

L. Babai: Graph isomorphism in quasipolynomial time (2016)
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One-sided test: Colour refinement

Apply  heuristic on  and :  If  Heuristic say 
“no” then , otherwise we do not know. 

Common heuristic is colour refinement 

In a paper by Boris Weisfeiler and Andrei 
Leman (1968)

G H
G ≇ H Are these 

 graphs 
isomorphic

?

Colour 
REFINEMENT 

Says No …

B. Weisfeiler and A. Leman. The reduction of  a graph to canonical form and the algebra which appears therein (1968)
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Colour refinement

(
(
(

)
)

)

G H

G ≇ H

Initial: All vertices have their original colour (label) 

Iteration: Separation of  identically coloured vertices based on colour 
histograms of  neighbours. 

Two graphs are non-isomorphic if  they have different colour histograms.

Neighbours

( )

)(
)(

( )
( )

( )
( )
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Colour refinement

(
(

)
)

G H

G ≅ H?

( )
( )

Stops when colour partition does not change (max  iterations)n

Initial: All vertices have their original colour (label) 

Iteration: Separation of  identically coloured vertices based on colour 
histograms of  neighbours. 

Two graphs are non-isomorphic if  they have different colour histograms.

56



Colour refinement

G H

Initial: All vertices have their original colour (label) 

Iteration: Separation of  identically coloured vertices based on colour 
histograms of  neighbours. 

Two graphs are non-isomorphic if  they have different colour histograms.

( )

G ≅ H?

Stops when colour partition does not change (max  iterations)n

57



Colour refinement

Extensively studied in the theoretical computer science community 

Many different characterisations of  when two graphs have the same 
colour histograms (equivalent for colour refinement). 

Successful on random graphs with high probability 

Weak expressive (distinguishing) power 

L. Babai and L. Kucera. Canonical labelling of  graphs in linear average time (1979) 
Cai et al.: An optimal lower bound on the number of  variables for graph identifications. (1992) 
Arvind et al.: On the power of  color refinement (2015)  
M. Grohe: Descriptive Complexity, Canonisation, and Definable Graph Structure Theory (2017) 
Arvind et al.: On WL invariance: Subgraph Counts and related properties (2019) 
M. Grohe. The logic of  graph neural networks (2021)
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ρ(colour refinement)

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Cannot count cycles (triangles)  

Cannot distinguish d-regular graphs 

Only tree information 

Arvind et al.: On the power of  color refinement (2015) 
Images: Wolfram MathWorld, Christopher Morris

3-regular graphs

Back to MPNNs
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MPNNs & Colour refinement
If  colour refinement cannot tell two graphs apart 

then neither can any MPNN!

Theorem   (Morris et al. 2019, Xu et al. 2019)

ξ(0)(G, v) := Hot-one encoding of label of vertex v
ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t−1)(G, u) ∣ u ∈ NG(v)}}))

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

𝖼𝗋(0)(G, v) := Initial label of v

𝖼𝗋(t)(G, v) := 𝖧𝖺𝗌𝗁(𝖼𝗋(t−1)(G, v), {{𝖼𝗋(t−1)(G, u) ∣ u ∈ NG(v)}})
ρ(G) := {{𝖼𝗋(G, v) ∣ v ∈ VG}}

MPNNs Color refinement

G H G H

No MPNN can separate these graphs

Xu et al.: How powerful are graph neural networks? (2019) 
Morris et al: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019) 60



MPNNs & Colour refinement

ρ(colour refinement) ⊆ ρ(MPNNs)

Expressive power of  MPNNs is upper bounded by colour refinement

Expressive

Expressive ρ(ℋ)

ρ(ℋ)Recall:

We have just shown:
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Lower bound?
We have seen that MPNNs cannot separate more graphs than 
colour refinement. 

Can colour refinement separate more graphs than MPNNs?

There exists a GNN 101 which can embed  and  
differently when colour refinement assigns them 

different colours

G H
Theorem   (Morris et al. 2019)

The class of  MPNNs is as powerful (or weak) as colour refinement 

Morris et al: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

No!
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What else can we say?
ρ(colour refinement) = ρ(MPNNs)

Other - more insightful - characterisations?

A detour to homomorphism counts
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Homomorphisms
Let  and  be graphs. 

A function  is a homomorphism if  it is edge preserving
 and label preserving.

P = (VP, EP, LP) G = (VG, EG, LG)

h : VP → VG
(v, w) ∈ Ep ⇒ (h(v), h(w)) ∈ EG
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Homomorphism counts
Define  

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (    ,           ) 𝗁𝗈𝗆 (    ,           ) 𝗁𝗈𝗆 (    ,            )

#vertices = 4 2#edges=10 70 = 2 ⋅ 23 + 2 ⋅ 33
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Homomorphisms
Weaker notion than subgraph isomorphism (see later). 

Underlies semantics of  many graph query languages. 

Algebra of  homomorphism counts: A rich and active area of  
research. 

Back to MPNNs
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   for all trees  
 if  and only if   

colour refinement cannot distinguish  from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

MPNNs and hom counts

MPNNs can only detect tree information from a graph!

Theorem (Dell et al. 2019, Dvorák 2010)

Z. Dvoräk: On recognizing graphs by numbers of  homomorphisms (2010) 
Dell et al. Lovász meets Weisfeiler and Leman (2018)

   for all trees  if  and only if  no 
MPNN can distinguish  from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T
G H

Corollary

Follows from ρ(cr) = ρ(MPNN)
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Beyond distinguishing power?

Approximation properties (universality) 

Logical expressiveness 

Generalization
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Approximation properties
Equip set of  graphs  with a topology and assume that  consists 
of  continuous graph embeddings from  to . 

Let  be a compact set of  graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

 If   is closed under linear combinations and products, then  can 
approximate any continuous function  satisfying 

ℋ ℋ
Ξ : 𝒞 → ℝ

ρ(ℋ) ⊆ ρ({Ξ}) .

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

Can be generalised to general embeddings with output space ℝd

Stone-Weierstrass

W. Azizian and M. Lelarge: Characterizing the expressive power of  invariant and equivariant graph neural networks (2021) 
G. and J. Reutter: Expressiveness and approximation properties of  graph neural networks (2022) 
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MPNNs: Approximation

We know  

Update functions can be used to approximate product and  take linear 
combinations of  MPNNs

ρ(MPNNs) = ρ(colour refinement)

On compact set of  graphs, MPNNs can approximate any continuous graph 
embedding  satisfying Ξ : 𝒞 → ℝ
ρ(colour refinement) ⊆ ρ({Θ})

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

Intricate relation between distinguishing power and approximation properties

W. Azizian and M. Lelarge: Characterizing the expressive power of  invariant and equivariant graph neural networks (2021) 
G. and J. Reutter: Expressiveness and approximation properties of  graph neural networks (2022) 
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Universality and graph isomorphism

In order for a class of  methods to be able to approximate any (invariant) 
continuous functions, the class of  methods should be able to distinguish any 
two non-isomorphic graphs.

Theorem (Chen et al. (2019) 

ρ(ℋ) ⊆ ρ({Ξ})Minimal size

(G, H) ∈ ρ(ℋ) ⇔ G ≅ H

Proof

Chen et al.:  On the equivalence between graph isomorphism testing and function approximation with GNNs (2019)
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Logical expressiveness

Finite variable logics. 

Extension with Presburger quantifiers.
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Colour refinement (again)
I mentioned that  has many characterisations. 

Of  interest is also a logical one, in particular First-order logic with 2 
variables and counting quantifiers ( ). 

ρ(colour refinement)

C2

φ(x) = ∃≤5y (E(x, y) ∧ ∃≥2x (E(y, x) ∧ La(x)))

Cai et al.: An optimal lower bound on the number of  variables for graph identifications. (1992) 
M. Grohe. The logic of  graph neural networks (2021)

unary label predicatebinary edge predicate

Given graph , vertex  satisfies :G v ∈ VG φ It has at most 5 neighbours  
each with at least to neighbours labeled “a”(G, v) ⊧ φ
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Colour refinement and 𝖢2

Two graph shave the same colour histogram after t iterations of  
colour refinement if  and only if  they satisfy the same   

sentences of  quantifier depth 
C2

t

Theorem   (Cai et al. 1992)

Cai et al.: An optimal lower bound on the number of  variables for graph identifications. (1992) 
M. Grohe. The logic of  graph neural networks (2021)

ρ(colour refinement) = ρ(MPNNs) = ρ(𝖢2)
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What about vertices?



Which unary  formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)

Cannot be reached by message passing!

 can -express  if  there exists a  such that 
for all   
ℋ 𝒞 Ξ ξ ∈ ℋ

G ∈ 𝒞, v ∈ Vp
G : ξ(G, v) = Ξ(G, v)

I am blue and there exist 
 a red vertex somewhere…

76



Which unary  formulas can MPNNs express?C2

Not all:  

Graded modal logic: syntactical fragment of   in which quantifiers 
are of  the form  

φ(x) := Lb(x) ∧ ∃yLr(y)

C2
∃≥N(E(x, y) ∧ φ′ (y))

Let  be a unary FO formula. Then,  is equivalent to a 
graded modal logic formula if  and only if   is expressible by 

the class of  MPNNs.

φ(x) φ(x)
φ(x)

Theorem   (Barceló et al. 2020)

∃ξ ∈ MPNNs : ∀G ∈ 𝒢, ∀v ∈ VG : (G, v) ⊧ φ ⇔ ξ(G, v) = 1

Barceló et al.: The logical expressiveness of  graph neural networks (2020)
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Role of  activation functions

Proof  relies on sign, ReLU, trReLU activation function.

Let  be a unary FO formula. Then,  is equivalent to a graded 
modal logic formula if  and only if   is expressible by the class of  
MPNNs.

φ(x) φ(x)
φ(x)

Theorem

Sammy Khalife. GNNs with polynomial activation functions have limited expressivity (202

There is a  in graded modal logic that is not expressible by MPNNs 
using polynomial activation functions.

φ(x)
Theorem   (Sammy Khalife 2023)
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MPNN+: Extended MPNNs
Can we extend MPNNs such that all  formulas (including 

) can be expressed?
C2

φ(x) := Lb(x) ∧ ∃yLr(y)

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t−1)(G, u) ∣ u ∈ NG(v)}}))

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t−1)(G, u) ∣ u ∈ NG(v)}}),

𝖦𝗅𝗈𝖻𝖺𝗅(t)({{ξ(t−1)(G, u) ∣ u ∈ VG}}))

Add global aggregation in every layer

Barceló et al.: The logical expressiveness of  graph neural networks (2020)
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MPNNs+

Every unary  formula  is expressible by the class of  MPNNs+C2 φ(x)
Theorem   (Barceló et al. 2020)

The corresponding colour refinement version is known as the one-   
dimensional Weisfeiler-Leman algorithm or 1-WL on vertices.

ρ(1-WL) = ρ(MPNNs+)

Barceló et al.: The logical expressiveness of  graph neural networks (2020)
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Wait a moment! MPNNs go easily beyond FO!

L. Libkin. Elements of  Finite Model Theory (2004)

𝗍𝗋𝖱𝖾𝗅𝖴( ∑
u∈NG(v)

Pr(u) − ∑
u∈NG(v)

Pb(u)) = {1 v had more red than blue neighbors
0 otherwise

This property is known not to be expressible as an FO formula φ(x)

By means of  locality of  FO 
or 

By playing so-called Erhenfeucht-Fraisse game. 

Proof
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Solution? Add more complex quantifiers!
φ(x) = ∃≥2y (E(x, y) ∧ Lr(y))

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of  graph neural networks via logical characterizations (2024)

φ(x) = (#y[E(x, y) ∧ Lr(y)] ≥ 2)
true when  has more than two 

red neighbours
x

φ(x) = (#y[E(x, y) ∧ Lr(y)] − #y[E(x, y) ∧ Lb(y)] ≥ 0)
true when  has more red than 

blue neighbours
x

φ(x) = (
k

∑
i=1

ai#y[E(x, y) ∧ ψi(y)] ≤ δ) true when the neighbours of   
satisfy the linear inequality

x

Presburger  quantifier
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Local and Global
φ(x) = (#y[E(x, y) ∧ Lr(y)] ≥ 2) true when  has more than two 

red neighbours
x

true when  has all red nodes 
in graph as neighbours

xφ(x) = (#y[Lr(y)] − #y[E(x, y) ∧ Lr(y)] = 0)

global counting local  counting

 Extending Two-variable FO with Presburger quantifiers: 
 New logics: MP (global) and L-MP (local)
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Uniform characterisation of  sum-GNNs

The language L-MP is equivalent to sum-GNNs using eventually 
constant activation functions 
Allowing global aggregation in sum-GNNs, equivalence to MP.

Theorem  (Benedikt et al. 2024) 

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of  graph neural networks via logical characterizations (2024)

a vertex has more red than blue 
neighbours

L-MP expressible 

φ(x) = (#y[E(x, y) ∧ Lr(y)] − #y[E(x, y) ∧ Lb(y)] ≥ 0)
sum-GNN expressible

𝗍𝗋𝖱𝖾𝗅𝖴( ∑
u∈NG(v)

Pr(u) − ∑
u∈NG(v)

Pb(u))
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Uniform characterisation of  sum-GNNs

The language L-MP is equivalent to sum-GNNs using eventually 
constant activation functions 
Allowing global aggregation in sum-GNNs, equivalence to MP.

Theorem  (Benedikt et al. 2024) 

What about ReLU?? This activation is not 
eventually constant. Theorem fails. 
What about max, avg as aggregation functions?

Example 5. Consider a GNN T with 1 layer defined by (1⇥2) matrices A1 and B1, such that A1 = [0, 0] and
B1 = [1,�1], and vector c1 = [0, 0]T. Consider a classification vector cls = [1]. Notice that if G = (V,E,�)
is a 2-colored graph and v 2 V , then hcls, T (G, v)i > 0 i↵ v has strictly more neighbors labeled 1 than
neighbors labeled 2 in G. It is known that there is no FO formula �(x) such that, for each colored graph
G = (V,E,�), the set �(G) contains precisely those nodes v 2 V with strictly more neighbors labeled 1 than
neighbors labeled 2.

Eventually constant activation functions. The latter examples tells us that if we want to capture the
full logical expressiveness of GNNs, we need to go beyond FO. Recently, the full expressive power of GNNs
based on so-called eventually constant activation functions, which include the case of TrReLU and Sign, has
been characterized in terms of an extension of GML with Presburguer formulas [3]. We call the resulting
logic PGML. Formally, PGML extends GML with formulas � of the form:

X

kp

�k · ⌃�k � �,

where each �k is a PGML formula, each �k 2 Z, and � 2 Z. If G = (V,E,�) is a colored graph and v 2 V ,
then v 2 �(G) i↵: X

kp

�k · |{u | (u, v) 2 E and u 2 �k(G)}| � �.

Example 6. The PGML formula � = (⌃P1 � ⌃P2 > 0, 1) defines the same unary property as the pair
(T , cls) from Example 5. That is, for each colored graph G = (V,E,�), the set �(G) contains precisely those
nodes v 2 V with strictly more neighbors labeled 1 than neighbors labeled 2.

The following result presents a characterization of the unary properties of colored graphs that are ex-
pressible over the class of TrReLU-GNNs (equivalently, Sign-GNNs).

Theorem 5. [3] Let � be Sign or TrReLU. The following are equivalent for each unary property P over
colored graphs:

• P is expressible over the class of �-GNNs.

• P can be expressed as a formula in PGML, i.e., there exists a PGML formula � such that P(G) = �(G)
for every colored graph G.

The case of ReLU. It happens to be the case that the previous characterization no longer holds when
� = ReLU. In fact, while every PGML formula can be turned into an equivalent ReLU-GNN, the opposite
does not hold.

Proposition 2. [3] There is a ReLU-GNN T and a classification vector cls, such that for no PGML formula
� it is the case �(G) = (T , cls)(G) = {v 2 V | hcls, T (G, v)i > 0} for every colored graph G = (V,E,�).

We explain the idea of how the property expressed by ReLU-GNNs looks like. Consider colored graphs
of the following form:

r

· · · · · ·

6
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Generalisation and expressivity
We want the generalisation error   to be small. L𝒟(ξ) − L𝒯(ξ)

87

For , with probability  (in our selection of  training data 
 of  size ) for all                                       

 

where  is the VC dimension of   

δ > 0 1 − δ
𝒯 m ξ ∈ ℋ :

L𝒟(ξ) − L𝒯(ξ) ≤
2d log( em

d )
m

+
log( 1

δ )
2m

d ℋ

Theorem  (Vapnik and Chervonenkis 1964)

Vladimir Vapnik and Alexey Chervonenkis: The uniform convergence of  frequencies of  the appearance of  events to their probabilities (1964) 



VC dimension

88

A set of  graphs  is shattered by an embedding class G1, …, Gd ℋ

if, for any labeling y1, …, yd ∈ {0,1}d

we can find an embedding  (which may depend on the labeling)ξ ∈ ℋ

such that ξ(G1) = y1, …, ξ(Gd) = yd

VC dimension= maximal number of  graphs that can be shattered.



VC dimension

89

VC dimension= maximal number of  graphs that can be shattered.

 The VC dimension of  MPNNs on  is bounded by the number of  
graphs in  that can be distinguished by MPNNs. 

𝒢n
𝒢n

Theorem

Let us assume we consider graphs up to size : n 𝒢n

We can also show matching lower bound.

Christopher Morris, F. Geerts, J. Tonshoff, Martin Grohe: WL meet VC (2023)

 The VC dimension of  MPNNs on all graphs is unbounded.
Corollary



Colour complexity
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  If  color refinement does not need many colours for a graph: low colour complexity

We can get smaller bounds on number of  distinguished graphs.

Christopher Morris, F. Geerts, J. Tonshoff, Martin Grohe: WL meet VC (2023)

VC dimension is small Less training data needed

Colour complexity

• For graphs with low colour complexity, Nn,L is small, leading to better generalisation.

• For example, when only dealing with 2-regular graphs color refinement only picks
up number of nodes.

• Low VC dimension ⇒ less expressive models, and less training data are needed.

Discrete Mathematics › Graph Theory › Simple Graphs › Regular Graphs ›

Two-Regular Graph
Download
Wolfram Notebook

A two-regular graph is a regular graph for which all local degrees are 2. A two-regular graph

consists of one or more (disconnected) cycles.

The numbers  of two-regular graphs on , 2, ... nodes are 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, ...
(OEIS A008483), which are equivalent to the numbers of partitions of  into parts . The

first few such graphs are illustrated above.

This sequence has closed form

(1)

where  is the partition function P. It also has generating function given by

(2)

(3)

(4)

where  is a q-Pochhammer symbol.

TOPICS

Find out if you already have access to Wolfram tech through
your organization » ×This website uses cookies to optimize your experience with our services on the site, as

described in our Privacy Policy. Accept & Close

15/12/2024, 11:36 Two-Regular Graph -- from Wolfram MathWorld

https://mathworld.wolfram.com/Two-RegularGraph.html 1/2

17 / 21

on 2-regular graphs only one colour is needed. 
MPNNs only distinguish based on size



Generalisation and expressivity

91

Only tip of  iceberg

Continuity and covering numbers

graph neural tangent kernels

Distance measures

graphons

Understanding precise impact of  expressiveness on 
generalization, not well understood yet



Questions?
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More powerful methods
Boosting expressive power
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How to beyond MPNNs?

Feature augmentation 

subgraph GNNs. 

Higher-order MPNNs

95

Theoretical research guides architecture design!



Feature Augmentation
Boost the expressive power by adding information
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Feature engineering
Deep learning and MPNNs have replaced “old school” feature 
engineering approach.

Number of  edges 
Number of  cycles of  length 5 
Centrality measures 

ℝd SVM

MPNNs were supposed to learn such features automatically … 
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   for all trees  if  and only if  
no MPNN can distinguish  from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T
G H

Idea #1: Adding expressive features

What if  we add subgraph information before doing message-
passing?

Theorem

More than trees

Recall:
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Structural encodings

1.Choose collection of  rooted graph patterns/motifs     

2.Choose how to match subgraphs in  with data graph  

3.Add count of  matches to vertices as extended features.

𝒫 G

𝒫 = { }C6 C5

Homomorphism 
Subgraph isomorphism

4

Pr = (VP, EP, {r})
r

r r

𝒫 := {Pr
1, …, Pr

ℓ}
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Matches

Homomorphism: edge preserving 

Subgraph isomorphism: bijection , edge 
preserving 

Induced subgraph isomorphism: 
bijection, edge preserving (both ways)

π : VP → VS ⊆ VG containing v

Pr = (VP, EP, {r})
r

v

v

v

𝗁𝗈𝗆(Pr, Gv)

𝗌𝗎𝖻𝗂𝗌𝗈(Pr, Gv)

𝗂𝗇𝖽𝗌𝗎𝖻𝗂𝗌𝗈(Pr, Gv)

Counts
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-MPNNs𝒫

ξ(0)(G, v) := Hot-one encoding of label of vertex v + 𝗁𝗈𝗆(Pr
1, Gv), …, 𝗁𝗈𝗆(Pr

ℓ, Gv)
ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u), 𝗁𝗈𝗆(Pr

1, Gu), …, 𝗁𝗈𝗆(Pr
ℓ, Gu) ∣ u ∈ NG(v)}}))

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

-MPNNs𝒫

Add structural encoding as vertex features and run MPNN

Did we increase expressive power?

Barceló et al.: Graph neural networks with local graph parameters. (2021)

𝒫 := {Pr
1, …, Pr

ℓ}

hom counts of  patterns
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-MPNNs𝒫

We have seen that these graphs equivalent for colour refinement but 
clearly not  for       -MPNNs.  

So, increase in power! 

What is their precise expressive power?

v

(2)
(2) (2)

(2) (2)
(2)

G1

w

(0)
(0) (0)

(0) (0)
(0)

H1

Figure 1: Two graphs that are indistinguishable by the WL-test. The numbers between round
brackets indicate how many homomorphic images of the 3-clique each vertex is involved in.

As a consequence, noMPNN can detect that vertex v in Fig. 1 is part of a 3-clique, whereasw is not.
Similarly, MPNNs cannot detect that w is part of a 4-cycle, whereas v is not. Further limitations
of WL in terms of graph properties can be found, e.g., in Fürer (2017); Arvind et al. (2020); Chen
et al. (2020); Tahmasebi & Jegelka (2020).

To remedy the weak expressive power ofMPNNs, so-called higher-orderMPNNs were proposed
(Morris et al., 2019; Maron et al., 2019b; Morris et al., 2020), whose expressive power is measured
in terms of the k-dimensional WL procedures (k-WL) (Maron et al., 2019a; Chen et al., 2019a;
Azizian & Lelarge, 2021; Geerts, 2020; Sato, 2020; Damke et al., 2020). In a nutshell, k-WL

operates on k-tuples of vertices and allows to distinguish vertices (graphs) based on structural
information related to graphs of treewidth k (Dvorak, 2010; Dell et al., 2018). By definition,
WL = 1-WL. As an example, 2-WL can detect that vertex v in Fig. 1 belongs to a 3-clique or a
4-cycle since both have treewidth two. While more expressive than WL, the GNNs based on k-WL

require O(nk) operations in each iteration, where n is the number of vertices, hereby hampering
their applicability.

A more practical approach is to extend the expressive power of MPNNs whilst preserving their
O(n) cost in each iteration. Various such extensions (Kipf & Welling, 2017; Chen et al., 2019a; Li
et al., 2019; Ishiguro et al., 2020; Bouritsas et al., 2020; Geerts et al., 2020) achieve this by infusing
MPNNs with local graph structural information from the start. That is, the iterative message
passing scheme of MPNNs is run on vertex labels that contain quantitative information about local
graph structures. It is easy to see that such architectures can go beyond the WL test: for example,
adding triangle counts to MPNNs su�ces to distinguish the vertices v and w and graphs G1 and
H1 in Fig. 1. Moreover, the cost is a single preprocessing step to count local graph parameters,
thus maintaining the O(n) cost in the iterations of the MPNN. While there are some partial results
showing that local graph parameters increase expressive power (Bouritsas et al., 2020; Li et al.,
2019), their precise expressive power and relationship to higher-order MPNNs was unknown, and
there is little guidance in terms of which local parameters do help MPNNs and which ones do not.
The main contribution of this paper is a precise characterization of the expressive power of MPNNs
with local graph parameters and its relationship to the hierarchy of higher-order MPNNs.

Our contributions. In order to nicely formalize local graph parameters, we propose to extend
vertex labels with homomorphism counts of small graph patterns.1 More precisely, given a graphs

1We recall that homomorphisms are edge-preserving mappings between the vertex sets.

2

𝒫 = { }

= hom count(c)
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  for all pattern trees  if  
and only if  no P-MPNN can distinguish  from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) 𝒫− T
G H

-MPNNs: Expressive power𝒫
Theorem

Expressive Power of F -MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way)
if:
MPNNs F-MPNNs

Homomorphism counts are equal for Homomorphism counts are equal for
every rooted tree (Dell et al., 2018). every F-pattern tree (our contribution).

with:
Rooted trees S r : a graph without cycles
and a designated root

F-pattern tree T
r : backbone tree S

r

with vertices s ∈ VS joined with copies
of patterns in F

11 / 17

𝒫 = { }
Table 2: The e�ect of di�erent cycles for the GAT model over the ZINC dataset, using mean
absolute error.

S�� (F) MAE

N��� 0.47±0.02
{C3} 0.45±0.01
{C4} 0.34±0.02
{C6} 0.31±0.01
{C5, C6} 0.28±0.01
{C3, . . . , C6} 0.23±0.01
{C3, . . . , C10} 0.22±0.01

Table 3: Results for the PATTERN dataset show that homomorphism counts improve all models
except GatedGCN. We compare weighted accuracy of each model without any homomorphism
count (baseline) against the model augmented with the counts of the set F that showed best
performance (best F).

M���� + ���� F A������� �������� A������� ����

GAT{K3, K4, K5} 78.83 ± 0.60 85.50 ± 0.23
GCN{K3, K4, K5} 71.42 ± 1,38 82.49 ± 0.48
GraphSage {K3, K4, K5} 70.78 ± 0,19 85,85 ± 0.15
MoNet {K3, K4, K5} 85.90 ± 0,03 86.63 ± 0.03
GatedGCN {;} 86.15 ± 0.08 86.15 ± 0.08

predict whether a vertex belongs to a particular cluster or pattern, and all results are measured
using the accuracy of the classifier. Also here, our results show that homomorphism counts, this
times of cliques, tend to improve the accuracy of our models. Indeed, for the PATTERN dataset
we see an improvement in all models but GatedGCN (Table 3), and three models are improved
in the CLUSTER dataset (reported in the appendix). Once again, the best performer in this task
is a model that uses homomorphism counts. We remark that for cliques, homomorphism counts
coincide with subgraph isomorphism counts (up to a constant factor) so our extensions behave like
GSNs.

Link prediction In our final task we consider a single graph, COLLAB (Hu et al., 2020), with
over 235 000 vertices, containing information about the collaborators in an academic network, and
the task at hand is to predict future collaboration. The metric used in the benchmark is the Hits@50
evaluator (Hu et al., 2020). Here, positive collaborations are ranked among randomly sampled
negative collaborations, and the metric is the ratio of positive edges that are ranked at place 50 or
above. Once again, homomorphism counts of cliques improve the performance of all models, see
Table 4. An interesting observation is that this time the best set of features (cliques) does depend
on the model, although the best model uses all cliques again.

14

Zinc dataset

Barceló et al.: Graph neural networks with local graph parameters. (2021)

Take tree: add in each tree vertex 
copies of  rooted patterns
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ℋ
Complexity
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MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

-MPNNs𝒫

Message passing

The larger and complex   more complexity counting 
                                        more expressive power

𝒫 ⇒
⇒
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Idea #2: (Random) Vertex identifiers

Message-Passing is only based on vertex features and adjacency 
information. 

Two different vertices with the same vertex features will be treated 
the same (if  they have the same colour in colour refinement). 

What if  we add vertex identifiers?
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Vertex identifiers
Self  identification: useful for cycle detection

??

In terms of  colour refinement: every vertex has a unique colour
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rMPNNs
How to choose identifiers? Common choice is at random! 

With high probability random features are vertex identifiers

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020) 
Abboud et al. :The surprising power of  graph neural networks with random node initialization. (2021) 
Sato et al.: Random features strengthen graph neural networks (2021).

rMPNNs  approximate any invariant graph/vertex 
embedding with high probability

Theorem

Invariance of  computed embedding only in expectation!
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Message passing

rMPNN
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Idea #3: Use global information

Extract global graph information and use it as positional encodings 
of  vertices 

 Spectral information 

Shortest paths (distance information) 

Biconnectivity (connectivity information)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021) 
Ying et al.: Do transformers really perform bad for graph representation (2021) 
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022) 
Zhang et al.: Rethinking the expressive power of  gnns via graph biconnectivity (2023)] 2 109



Spectral graph theory
Eigenvalues/vector:  

For adjacency matrices: Eigenvalues and eigenvectors of  Laplacian 

M ⋅ v = λv

LG = DG − AG

= −

LG AGDGG

Images: Wikipedia

Laplacian eigenvalues and vectors contain connectivity information 

multiplicity 1st eigenvalue   connected components. ∼
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Spectral MPNNs

Figure 2: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors �i viewed as vectors
positionned on the axis of frequencies (eigenvalues).

the Laplacian is a fundamental operator in physics and is notably used in Maxwell’s equations [16]
and the heat diffusion [6].

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathematics as the Green’s
function of the Laplacian [9], represents the electrostatic potential of a given charge. In a graph, the
same concept uses the pseudo-inverse of the Laplacian G and can be computed by its eigenfunctions.
See equation 1 , where G(j1, j2) is the electric potential between nodes j1 and j2, �̂i and �̂i are
the i-th eigenvectors and eigenvalues of the symmetric Laplacian D

�1
2 LD

�1
2 , and D is the degree

matrix, and �̂i,j the j-th row of the vector.

G(j1, j2) = d
1
2
j1
d

�1
2

j2

X

i>0

(�̂i,j1�̂i,j2)
2

�̂i

(1)

Further, the original solution of the heat equation given by Fourier relied on a sum of sines/cosines
known as a Fourier series [7]. As eigenvectors of the Laplacian are the analogue of these functions in
graphs, we find similar solutions. Knowing that heat kernels are correlated to random walks [6, 4],
we use the interaction between two heat kernels to define in equation 2 the diffusion distance dD
between nodes j1, j2 [6, 10]. Similarly, the biharmonic distance dB was proposed as a better measure
of distances [28]. Here we use the eigenfunctions of the regular Laplacian L.

d2
D
(j1, j2) =

X

k>0

e�2t�i(�i,j1 � �i,j2)
2 , d2

B
(j1, j2) =

X

i>0

(�i,j1 � �i,j2)
2

�2
i

(2)

There are a few things to note from these equations. Firstly, they highlight the importance of pairing
eigenvectors and their corresponding eigenvalues when supplying information about relative positions
in a graph. Secondly, we notice that the product of eigenvectors is proportional to the electrostatic
interaction, while the subtraction is proportional to the diffusion and biharmonic distances. Lastly,
there is a consistent pattern across all 3 equations: smaller frequencies/eigenvalues are more heavily
weighted when determining distances between nodes.

2.1.3 Hearing the shape of a graph and its sub-structures

Another well-known property of eigenvalues is how they can be used to discriminate between different
graph structures and sub-structures, as they can be interpreted as the frequencies of resonance
of the graph. This led to the famous question about whether we can hear the shape of a drum
from its eigenvalues [23], with the same questions also applying to geometric objects [12] and 3D
molecules [33]. Various success was found with the eigenfunctions being used for partial functional
correspondence [32], algorithmic understanding geometries [26], and style correspondence [12].
Examples of eigenvectors for molecular graphs are presented in Figure 3.

Figure 3: Examples of eigenvalues �i and eigenvectors �i for molecular graphs. The low-frequency
eigenvectors �1,�2 are spread accross the graph, while higher frequencies, such as �14,�15 for the
left molecule or �10,�11 for the right molecule, often resonate in local structures.
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Add eigenvectors as vertex features

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021) 111



Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Cvetković et al.: Eigenspaces of  graphs (1997) 
M. Fürer: On the power of  combinatorial and spectral invariants (2010)

A = ∑
λ

λPλ Pλ =
pλ

11 pλ
12 … pλ

1n
⋮ ⋮ ⋱ ⋮

pλ
n1 pλ

n2 … pλ
nn

Multiset

Spectral invariant

Number of  length 3, 4, or 5 cycles, whether a graph is connected 
and the number of  length k closed walks from any vertex to itself

Graph properties

Beyond 1-WL/Colour Refinement
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SpecMPNN

specMPNN bounded in power by (1,1)-WL and strictly lower than 2-WL
Theorem (Seppelt and Rattan (2023 )

On the Expressive Power of  Spectral Invariant Graph Neural Networks” by Bohang 
Zhang, Lingxiao Zhao, Haggai Maron (2024) 
G. Rattan and T. Seppelt: Weisfeiler-Leman and Graph Spectra (2023) 

Variation used in Signet and BasisNet 

Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Can be using combination with any MPNN 

2-WL bound

We discuss these WL’s later
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Message passing

(1,1)-WL
specMPNNs

2-WL

Signnet
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Subgraph GNNs
Turning one graph into many
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General idea
Colour refinement equivalent graphs may contain colour refinement 
inequivalent subgraphs.

View graphs as a collection of  subgraphs then run MPNN

Colour refinement
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Subgraph Vertex Aggregation↦

Subgraph Selection 
- vertex deletion 
- vertex marking 
- edge deletion 
- edge marking 
- ego nets 
- marked ego-nets

MPNN

MPNN

MPNN

MPNN

MPNN

MPNN

A
gg

re
ga

tio
n

Su
bg

ra
ph

Vertex Aggregation
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Vertex Subgraph Aggregation↦

Subgraph Selection 
- vertex deletion 
- vertex marking 
- edge deletion 
- edge marking 
- ego nets 
- marked ego-nets

MPNN

MPNN

MPNN

MPNN

MPNN

MPNN

Vertex Aggregation

A
ggregation

Subgraph
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The subgraph GNN “wave”

NGNN

ID-GNN
DropoutGNN

GNN-AK

DS-GNN

k-OSAN

All provably more expressive than MPNNs*

Reconstruction GNN

Vertex Subgraph Aggregation↦ Subgraph Vertex  Aggregation↦

DSS-GNN

k-OSANT

Bevilacqua et al: Equivariant subgraph aggregation network (2022) 
Cotta et al.: Reconstruction for powerful graph representations (2021) 
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022 ) 
Huang et al.: Boosting the cycle counting power of  graph neural networks with I2-GNNs (2022) 
Papp et al.: DropGNN: Random dropouts increase the expressiveness of  graph neural networks. (2021) 
Qian et al.: Ordered subgraph aggregation networks. (2022) 
You et al.: Identity-aware graph neural networks. (2021) 
Zhang and P. Li. Nested graph neural networks (2021) 
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022) 
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Selection policies
- vertex deletion 
- edge deletion 
- ego nets 
- marked ego-nets

- k-vertex deletion

DS-GNN

Rec-GNN

- ego-netsNGNN

- marked ego-netsID-GNNs

- ego-netsGNNs-AK

- size k subgraph markingk-OSAN

Popular/effective: ego-nets
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k-OSAN

• k-OSANs and k-OSANs  encompass almost all subgraph 
methods with selection policy involving k vertices. 

• Strictly bounded in expressive power by (k+1)-WL 
• Incomparable to k-WL.

t
Theorem  (Qian et al. 2022)

if  2-WL cannot distinguish graphs, then neither can 1-OSANs  
2-WL can distinguish more graphs than 1-OSANs 
There exists graphs than can be distinguished by 1-OSANs but not by 
MPNNs,  and vice versa, there exists graphs that can be distinguished by 
MPNNs but not by 1-OSANs

k=2

Qian et al.: Ordered subgraph aggregation networks. (2022)
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Subgraph GNNs

Can always ensure to be strictly more expressive than MPNNs by 
including original graph in batch. 

Tractability only when easy subgraph policies are used, i.e., leading 
to a small number (linear) of  subgraphs. 

Seems a good balance between complexity and expressiveness
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Message passing

rMPNN

(1,1)-WL
specMPNNs

2-WL

Signnet
DS-GNN/1-OSAN/1-OSANt
DSS-GNN

(K-1)-OSAN

NGNN
ID-GNN
DropoutGNN

GNN-AK

k-WL
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K-dimensional Weisfeiler-Leman
Boosting expressive power by higher-order message-passing
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More powerful heuristic

Apply  heuristic on  and :  If  Heuristic say 
“no” then , otherwise we do not know.

G H
G ≇ H Are these 

 graphs 
isomorphic

?

k-WL  
sayS  
NO!

Colour refinement 
G ≅ H?

No G ≇ H

1-WL No G ≇ H

……
2-WL No G ≇ H
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Idea: higher-order GNNs

1-WL MPNNs

k-WL k-MPNNs

k-MPNNs will detect more graph 
information 

than MPNNs

  for all graphs  of  tree width k 
  if  and only if  

  k-WL cannot tell apart  from 

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem   (Dell et al. 2018, …)

Z. Dvorák: On recognizing graphs by numbers of  homomorphisms (2010) 
Dell et al. Lovász meets Weisfeiler and Leman (2018)
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k-Folklore GNNs (k-FGNs)

ξ(t)(G, v1, …, vk) := 𝖬𝖫𝖯(t)
1 ( ∑

u∈VG

k

∏
i=1

𝖬𝖫𝖯(t)
2 (ξ(t−1)(G, v1, …, vi−1, u, vi+1, …, vk)))

ρ(k − FGNN) = ρ(k-WL)
Theorem  (Maron et al. 2019), Azizian and Lelarge 2021)

Uses multiplicationGlobal aggregation-vertex embeddingk

Expressive power?

Maron et al.: Provably powerful graph networks (2019) 
W. Azizian and M. Lelarge. Characterizing the expressive power of  invariant and equivariant graph neural networks (2021)
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k-GNNs

ξ(t)(G, v1, …, vk) := σ(ξ(t−1)(G, v1, …, vk)W(t)
1 + (

k

∑
i=1

∑
u∈VG

ξ(t)(G, v1, …, vi−1, u, vi+1, …, vk))W(t)
2 )

ρ(k − GNN) = ρ(k-WL)
Theorem  (Morris et al. 2019)

Morris et al.: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

Global aggregation

A simpler architecture:

Expressive power?
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DS-GNN/1-OSAN/1-OSANt
DSS-GNN

(K-1)-OSAN

NGNN
ID-GNN
DropoutGNN

GNN-AK
Reconstruction GNN

Message passing

k-IGNs
k-GNNs k-FGNNs

(K-1)IGNs

(k+1)-GNNs

2-IGNs
2-GNNs

129

specMPNNs
Signnet



Questions?
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Conclusions
And look ahead
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What to use?

Graphs are small 

Efficiency not 
essential 

Expressivity 
guarantee needed

Large training 
datasets 

Invariance not 
important 

Preprocessing ok

Small graphs 

Good 
compromise in 
general

Subgraph Feature Augmentation Higher-order
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A lot of  recent 
progress 

WL hierarchy needs  
better reconciliation 
with practice 

Hom count 
characterisations 

Relational

Road ahead

Optimisation and 
training 
unexplored 

Generalisation 
properties 

Sample 
efficiency? 

Expressiveness Connection with Learning??

Gary et al. :Generalization and Representational Limits of  Graph Neural Networks (2020) 
Morris et al: WL meet VC (2023) 
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Conclusion

Study of  expressive is beautiful area of  research for ML researchers 

Combines theory and practice in an elegant way 

Many unresolved questions …
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