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Course

= Is about recent advances 1n graph learning.

o

= With an emphasis on the expressive power ot learning methods.

\/
%

Self-contained (too some extent).

\/
X4

Mostly high-level, but also low-level, so basically all levels.

Not all methods or related works are covered.

\/
%

\/
X4

Emphasis on theoretical aspects.




About the speaker

<= Background in mathematics, database theory and expressive power ot
query languages.

/
\ X

Since 2018, expressive power of linear algebra.

<= Natural move to the study ot expressive power of graph neural
networks.

= (urrent focus 1s on generalisation and relational learning.




Outhine

<= (Graph learning and expressive power

\/
X4

Message Passing Neural Networks

o

- Boosting power:

o

- Feature augmentation

Y

= Subgraphs
Ask Questions

/
X4

Higher-order message-passing

4
§ Indebted to Fabrizio Frasca, Beatrice Bevilacqua and Haggai Maron: Shamelessly :-) borrowed parts of their tutorial on expressive of GNNs at LOG 2022

- —

—




_‘lll_l.t.l..- el e i T e i i TR T R e ] e

R A T W e S e

el o T P S L IR S

- — " .

A R o e L R . o S e, ., . R

-

R WL R T T S . e s B J— et

W e

-———

e B -

r EE S L

e W S, LA R L s B B B B G S A S T S R e e e e B M T @ B W R Bl e R PN B W . B RS R P =

=

L R R T L T o e R R e L T T R e o e R T I e R e i L g PR

Al i i Aol

L L

)

IR

What

- P il b

o e e —— g e T ———

= -
—

T e e e i e i LI R e o]

-




e

R

T e

P

B e T = o8

e | e L i e T )

Why learning on graphs?

Graphs are everywhere!
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§ Images: Machine Learning on Graphs,Course by Jure Leskovec
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Graphs: One definition to rule them all

= Graph G = (Vg, E;, L) with

= Vertex set V.

o

- Vertex labels: L, : Vi, —» X2

T

Vertex features |

Hot-one encoding

i
Image: Wikipedia
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Adjacency matrix representation

= Graph G = (V, E., L) can also be represented by adjacency matrix
A and feature matrix F

= Letn = |V,;| be the number ot vertices. Let v,w € [n] :={1,...,n}.

1 (v,w) € E;

adjacency matrix A; € R™: (v,w) — { .
f 0 otherwise

feature matrix F; € | nXd .y L:(v)

= 'lo turn graph into matrix, one needs an ordering on the vertices.

3




Graph learning

7

g Embeddin
g Eml g method
? R %ssical ML

g = all graphs Y = output space




Embeddings
g = all graphs

7" = all vertices
Y = output space

<= Graph embedding: £: & - Y

o

> Vertex embedding: £: & — (77 — YY)

o

- p-Vertex embedding: £ : & — (77 — YY)

10
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Graph embeddings

aph embedding: £: & - Y

aph classification/regression

Toxic
5

\ Non toxic
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ertex embeddings

<= Vertex embedding: £ : & — (77 - Y)

= Vertex classification/regression. For example, prediction of subject

ol papers.

Images: Cora dataset

12
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p-Vertex embeddings

- p-Vertex embedding: £ : & — (77 - Y)

o

= For example, 2-vertex embeddings: link prediction

E(G,v,w)

—  link

— no link

16
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Graph learning tasks

14
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Applications

<= Vertex classifice categorise online user/items,
location aming (protein folding, alpha fold)

= Linky  LEARNING HAS «ph completion,  pemes W
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Images: Machine Learning on Graphs, course by Jure Leskovec




Graph learning

<= We want to learn an unknown embedding 2 : & — (77 — Y)

T

What does this mean???

<= T'he embedding = 1s partially revealed by means ot a training set

S e— {(Gl,Vl,yl), ...,(Gf, Vf,yf)} & e/ o

T

E(Gla Vl) E(Gfa Vz,”)

16
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(molecule,yes/no)

Graph classification

(cora, paper, topic)

Vertex classification

17

(social,p,,p,, yes/no)

Link prediction
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Graph learning: hypothesis class

= We want to find the best model consistent with training set 5

T

What does this mean???

o

- Models are selected from an hypothesis class #Z

o

- In the graph setting # consists of embeddings

18
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Hypothesis classes

MPNN
GOSN  2-IGN

Graphormer GATs
CWN 60 — k—GNNs

S %1000

C ayleyﬁ et
S (CNs

ChebNet Dropout GNN

k-IGNs  GraphSage

1

k-GNNs

k-SAN  1d-aware GNN




othesis Class Explosion

50 MOST APPEARED KEYWORDS

R

ek

: reinforcement learning

Aoon laarninm

graph neural network
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Graph Neural Networks 123

.. nip
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, active learning
' model-based reinforcement learning
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deep neural network
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_explainability
multi-task learning
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20

#lmages: Machine Learning on Graphs, course J. Leskovec
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What’s new?

\
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http://flaticon.com

b

Graph learning

Classical embedding methods depend on representation

E.g., think of MultiLayerPerceptron on vector representation ot flattened
adjacency matrix

Invariant

7
203 Embedding method
=

{7

R4 —— Classical ML.

g = all graphs Y = output space

22
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A desired property: Invariance

<= Embeddings should be invariant, that 1s, independent of the chosen
graph representation.

<= Invariance 1s defined 1n terms ot graph 1somorphisms.

<= T'he mapping 7z 1s a bijective vertex function satistying
(v, v) € E; <= (a(v), a(w)) € Ey also Ls(v) = Ly(z(v)) must hold.

23
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Invariant embeddings

E for all 7, G and v € VZ 1 6(G,v) = ¢(7(G), V)

ol

Isomorphism

(1,4) and (B,() have same embedding in Y

R R g e, W R TR e T BB A SRR R e S il S R i

We typically assume 1nvariant embedding methods (unless said otherwise)
2
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PN,
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Graph learning: ERM

|
Best one! o &

o‘o

- (Given tramning set  and hypothesis class # 2
= Empirical risk mimmimisation:

Find embedding £ in # which minimises empirical loss

1
— X 108S(E(G, Vi), )

T

Loss function 1s a mapping from YX Y — [

28




l.oss functions

<= (Choice depends on learning task (regression, classification,...)

= L1:108S(Yyegicreds Yirue) = | Voredictea = Yirue

=y, e = 2
<o LQ - |OSS(ypredicteda ytrue) e (ypredicted y true)

= (Binary) cross entropy:
|OSS(y predicted? 3 true) = Ytrue lOg(ypredicted F (1 = true)lOg(l e predicted)

26




Graph learning

<= (Graph learning systems solve ERM using back propagation and
oradient descent...

A\

E : arg min l Z; loss(E(G,, v)), ¥))

et C

20




@

o

o

<

NS
Ce®

What one really wants

Simply predicting labels for training data 1s insutficient.

We
We

want to predict labels for graphs not in the training data.

will assume the presence ot distribution & over & X Y.

We do not know the true distribution &, as 1t represents real-world unseen data.

28




Risk minimisation

= Risk minimisation: Find embedding & in % which minimises
expected loss over 9:

~/

¢ := arg min Probg )~[{(G) # y]
EeH

<= RM tocuses on minimising errors over all the data according to their
distribution.

2!




(Generalisation Error

<= We want to find a hypothesis £ € # that does well on the training
data (small empirical loss Lg(&))

<= But also has small expected loss Lg(&)

<= We want the generalisation error L (&) — Lo (&) to be small.

o

- Statistical learning theory provides bounds on training data
cuaranteeing small generalisation error.

30




(Generalisation error

<= We want the generalisation error [Lg(&) — Lo (&) to be small.

Theorem (Vapnik and Chervonenkis 94) -

For 6 > 0, with probability 1 — é (in our selection ot training data
I of sizem)tforall £ € # :

Lg(S) — Lo (S) <

where d 1s the

Vladimir Vapnik and Alexey Chervonenkis: The uniform convergence of frequencies of the appearance of eveg)tl to their probabilities (1964)

— p—— — pra—




Graph learning

<= (Graph learning systems solve ERM using back propagation and
oradient descent...

- =
¢ argmin— ) - loss(&(Gy, vy), y))
i e

Our focus will be on the expressive power of hypothesis classes #

g2




Expressive power

<= Which embeddings can be expressed by embeddings in #°?

o

>

hich embeddings can be approximated by embeddings in #°?

o

\%Y
= Which mputs can be separated/distinguished by embeddings in #Z°?
\%Y

o

Q

hat 1s the relationship between expressiveness and generalisation

of #?

33




Notions of expressivity

= letZ2:9 — (77 - Y) be a p-vertex embedding

Z can express E1f there exists a § € # such that for all G € €, v € V.. :
c(G,v) = E(G, V)

o

g

t2: ¢ — {0,1} indicator tunction for connected graphs.

e
- (Gan we find hypothesis in & € Z such that £(G) = Z(G) tor all graphs G

o

34




Notions of expressivity

Separation/distinguishing power ot #

() :={(G.V.H,wW) |V € X : {(G,v) =E(H, W)}

= All pairs of inputs that cannot be separated by any embedding in #

o

- (Gan we find hypothesis in & € Z such that &(G) # E(H) for any
connected graph G and disconnected graph H?

3D
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o

Distinguishing power

= Strongest power: #Z powerful
enough to detect non-1somorphic

oraphs

= Weakest power: Z cannot
differentiate any two graphs

36

Expressive

p(F)

p(#)




Distinguishing power
= Allows for comparing difterent classes of embeddings methods!

p(methodsl) C p(methods?)

Methods] 1s more powertul than Methods?2
Methods 2 1s bounded by Methods | 1n power

p(methodsl) = p(methods?2)

Both methods are as powertul

<= Allows for comparing embedding methods with algorithms, logic, ...

37
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Expressive power in M L. community

<= bocus has been on distinguishing power ot classes #Z'of embedding
methods.

<= (oal 1s to characterise p(#°) in a way to sheds light on what graph
properties a learning method can detect/use.

= We see an example shortly for #Z = the class ot Message-Passing Neural

Networks (MPNNs)

o

- Recent work addresses uniform expressiveness.

38
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E.xpressive power 1n

<= Search for increase 1in expressive
power has led to surge of new
methods of graph learning.

= Despite theoretical underpinning...
still a bit of alchemy to find the right
method...

S8

ML community
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Rl o

Expressiveness

We will gradually fill in this landscape
with graph learning methods

H
Complexity 40
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Questions?

41
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Message Passmg N eural Networks

(Stll) the most popular type of Graph Learnming Architecture

42
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A little graph embedding
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Message passing neural networks

A class of mvariant vertex and graph embedding methods

202 MPNN5s

?’ } . R4 —— Classical ML
X Invariant by design

g = all graphs Y = output space

§ Scarcelli et al.: The graph neural network model (2005),

'} Hamilton et al.: Inductive representation learning on large graphs (2017) 44

i} Gilmer et al.: Newral message passing for quantum chemustry (2017)
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Idea behind MPNNs: Neighbour aggregation

Every vertex defines a computation graph

Neural networks

© ? © O O
i j —' —~
} >~ U
w o ol R o “ o « o
® o ‘o: PN o‘ O ‘0 @ e o
‘ h N * 2 ] as/xd b ‘ “
N 2 0 = \e>rast—rll % 7 XL | W
U Pondas == @ @ s R % m o8 @, == ol [ Pl -
@ '.. ® o o0 ©® ® L X X ... @ Y ‘.

45

Images: Machine Learning on Graphs, Course by Jure Leskovec
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MPNNs: Vertex embedding

. E(G,V) = g(L) O?L—l) 0 eee o0 5(0)((;, V)

X

Message Passing Layers £9(G, v) € R

neighbourhoods

5(0)((}, v) := Hot-one encoding of label of vertex v € | a

£0G, v) = Upd (£9-1(G, ), Agg® (([£9~(G, ), £“(G,u) | u €

!

Ne())) )€ R

Message Passing between v and 1ts

neighbours u € N;(v)

Update and aggregate tunction contain
learnable parameters (NNs)

)

AR
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MPNNs: Graph embedding

0(G) :=po 5(L) o f(L_l) 0 eee -0 5(0)((;, V)
e =

Readout

p(G) = Readout({{é(L)(G, V) | v e VG}}>E R

Has learnable parameters T

Aggregation over all vertices

lypical choices for update, aggregate and readout: Multilayer Perceptrons

47
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| Neural Network Activation Functions: a small subset!

MPNN example: GNN 101

Non-linear activation function ¢ (ReLLU; sign, siemoid, ...)

V/
X4

o
’ﬂ

(t) e R? denotes embedding of vertex v

< Welght matrices W(t) e R4 3nd W(zt) e R%4 and bias vector
b I xd

F\(,(.)): L;(v) <= Embedding vertex labels

FO:= o (Fg—l>w<f>+ > o FCOWY 4 b<f>)

‘UENG(V) ,
H) Aggregation over

Matrix form FY :

o (F“‘DW({) + AF-VWY + B0 neighbours

T

adjacency matrix

§ Image: ‘TheAiEdge.io
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GNN 101: Graph embedding

= Weight matrix W € R4 and and bias vector b € R'*¢

FO:=c| ) FOW+b
veV
—— A oregation over all

vertices

ERM: Find best parameters W(ll), e W(lL), W(Zl) e W(Z(L), WwW. bW ..

49
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Iwo more examples of MPNNs

<= Graph Isomorphism Networks (GIN)

F® := MLP® ((1 + eMFE-D4 Y F<f—1>)

UEN, G(V)

<+ Graph Convolution Network (GCN)

VNGO [+ 1 TUENGOVWT TN+ 1

FO := MLP@( e e i 1>>

'} GIN: Xu et al.: How powerful are graph neural networks? (2019) 50
] GCN: Kipf and Welling: Semi-supervised classification with graph convolutional networks (2017)
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MPNNs: Expressive power

What 1s p(MPNNs)?

\

Recall: All pairs of graphs (G, H) such that all MPNNSs return same
oraph embedding on both graphs.

Understanding p(MPNN5s) translates in understanding power of
GNN 101, GCNs, GING, ....

A short detour to graph 1somorphism testing

- — - . p— .




MPNNs and 1somorphic graphs

<= Because of imnvariance: MPNNs embed 1somorphic graphs 1n the
same way. lhatis, it G~ H = (G,H) € p(MPNN)

= (Gan MPNNs embed non-isomorphic graphs difterently?

MPNN

=== Graph learning task

Equivalence class of

Isomorphic graphs

52




1'he graph 1somorphism problem

Given two graph G = (V,, E, L) and H = (Vy, Ey, Ly): are they

1isomorphic? Oris G = H?

<= Does there exist a graph isomorphism 7 : V. — V,,?

o

- T'heory: computational complexity 1s open.

- Quasi-polynomial algoritm OB by Laszlo Babai (2016).

o

= Practice: very fast tests.

| S
1} L. Babai: Graph isomorphism in quasipolynomial time (2016)

R R g e, W R TR e T BB A SRR R e S il S R i
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One-sided test: Colour refinement

B
NA

Apply heuristic on G and H: It Heurnistic say N

ARE THESE N———

N

COLOVR \

ISONORPHIC | REFINEMENT |

SAYS NO ...

“no” then G 2 H, otherwise we do not know. [ ereens T N

< Common heuristic 1s colour refinement

= In a paper by Boris Weisteiller and Andrei1
Leman 19 68 | HPH;HHE FPADA K k'AHc;)HH'-lECKOMY BUAY ulnozmm}omu

NP 2TOM AJITEBPA

B. 10. BEACKOEANER, A A HEMAHN
¥ PactmaTpHBRIBTCA ANrOPUTM NPMBEAEBHMA 3EAAHHOTO KOHEWHOTO MyamTHrpagsa I K.wa-
HOHMYecKomYy BMAY. B mpolecce Takoro NPHUBEAECHHS BOIHHKAET HOBLIE MHRAPUAHT rpaga—
anre6pa 2/ (), Mayuenne caoicTs anfebpil 21 () OKB3LIBAGTCA MONE3HslM NPH PEWeHAH
HeKOTOPLIX I&NEY TEOPHMH TpPagos. . :
Bogenraiotcs W OBCYIKAAOTCA HEKOTORble TNPeAnoNoMeHHs OTHOCMTENsHO CBA3H
mesmay ceoiictaamu anrebpsl 9f () u rpynno¥ aetomoptmramos rpacps Aut (). NocTpoen
. NPUMEP HEOPMEHTHPOBaUHOro Tpadga F.__unreﬁpa 2[ (I) xoToporo ‘cosnapaeTt € rpynnoBEoH
anrebGpolt HeKoTopoit HEeKOMMYTATHBHOM rpynmbl.

An algorithm is considered, reducing the specified finite multigraph I to canonical

form. In the course of ihis reduction, a new invariant of the graph is ggneraied-—
~algebra 9 (). Study of.the properties of the algebra Qr (I) proves helpful in solving

" .a nu mber of graph-theorefic problems. Some propositions concerning the relationships
" ‘petween the properties of the algebra 9 (r) and the graph’s automorphism group
- Aut (") are discussed, An example of non-—oriented graph [ is constructed whose

TP

TN AR T PR TS A

algebra 9 () coincides with the group algebra of a non—commufative group.

1. Paccmorpum :}Eonanonwmﬁ CKoHeynwmit tpad T n evo
watprny cmexuocrs -A (T)=={a;;}; agecy a;;—uncac pelep, me-
RymEDx RS {-fi BEPITHBLI rpapa B j-yio; .1, j=1, 2, ..., n. B cayyae
HeOpHeHTHPOBanKOTO. Tpatha nonaraeM a;j=aj;. Kanonnveckny
punom rpada Mot GyaeM HasuBaTh erc MaTPHLY CMEHHOCTH Ipil

B. Weisfeiler and A. Leman. 7 e reduction of a graph to canonical form and the algebra which appears theremn (1968)

Ias pansnefimero paa!.‘lﬁ!i'.’.'mmr BEPIIHH Ha XKA&CCH pPACCMOTPHM
smement u;; Matpuus U=X-X', rge X’'—Marpuua, nonyiesuas

ns X samenoll TepeMetNHBIX. X3, X2, ... NEPEMEHHHMH Xy, Xo, +- e,

1] L
TIpHuEM DBCC LEPEMEHHLIE Xy, Xgs oy X7y Xpy ... EE3ABHCHMEL,
Quamient .+ TRATETCH MHOMOYJIEHOM BTOPOH cTelleHyd OT Xi; Xpyeer
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Colour refinement

= Imtial: All vertices have their original colour (label)

= Iteration: Separation of 1dentically coloured vertices based on colour
histograms of neighbours.

= 'lwo graphs are non-isomorphic 1t they have ditterent colour histogrames.
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Colour refinement

- Imitial: All vertices have their original colour (label)

Y

= Iteration: Separation of 1dentically coloured vertices based on colour
histograms of neighbours.

= lwo graphs are non-isomorphic 1t they have ditterent colour histogrames.

Stops when colour partition does not change (max n iterations)
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Colour refinement

= Imtial: All vertices have their original colour (label)

= Iteration: Separation of 1dentically coloured vertices based on colour
histograms of neighbours.

= lwo graphs are non-isomorphic 1t they have ditterent colour histogrames.

Stops when colour partition does not change (max n iterations)

~ H?




Colour refinement

= bxtensively studied in the theoretical computer science community

/

Many ditferent characterisations ot when two graphs have the same
colour histograms (equivalent for colour refinement).

o

= Successful on random graphs with high probability

/

Weak expressive (distinguishing) power

} L. Babai and L. Kucera. Canonical labelling of graphs in linear average time (1979)

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)

Arvind et al.: On the power of color refinement (2015)

'} M. Grohe: Descriptive Complexity, Canonisation, and Definable Graph Structure T heory (2017)

i} Arvind et al.: On WL invariance: Subgraph Counts and related properties (2019) 58
8 M. Grohe. The logic of graph neural networks (2021




(a) Bicyclopentyl

[ —

<= (Uannot count cycles (triangles)
<= (annot distinguish d-regular graphs
<= Only tree information

'} Arvind et al.: On the power of color refinement (2015)
Images: Wolfram MathWorld, Christopher Morris

——

Back t5(9) MPNNSs




Theorem (Morris et al. 2019, Xu et al. 2019)

It colour refinement cannot tell two graphs apart
then neither can any MPNN!

!MPNl\ls_ Coolor refinement

EV(G, v) := Hot-one encoding of label of vertex v crO(G, v) := Inital label of v
£0(G,v) i= Upd"(£01(G,v), Age® (I1E~(G, . £ (G, u) | 1 € Ng(m)}) ) er(G,v) = Hash( cr=1(G, v), ({er=D(G, u) | u € Ng()}} )
= Readout({{cf(L)(G, v) | v € VG}}> p(G) := {cr(G,v) | v € Vg1
G G H
E; Ij E’ ) : == No MPNN can separate these graphs
— ) 4 E
Xu et al.: How powerful are graph neural networks? (2019) 60

Morris et al: Weusferler and Leman go neural: Higher-order graph neural networks. (2019)

—— — sl - il pra— —




MPNNs & Colour refinement

p()

Recall: :
Expressive

Expressive [0 ( %)

We have just shown: p(colour refinement) € p(MPNNs)

Expressive power of MPNNs 1s upper bounded by colour refinement

61




[.ower bound?

o

= We have seen that MPNNs cannot separate more graphs than
colour refinement.

<= (an colour refinement separate more graphs than MPNNs? No!

Theorem (Morris .t 2019)

T'here exists a GNN 101 which can embed G and H
difterently when colour refinement assigns them

different colours

= T'he class of MPNNs 1s as powertul (or weak) as colour reiinement

62
Morris et al: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019)




What else can we say?

p(colour refinement) = p(MPNN5s)

Other - more 1nsighttul - characterisations?

A detour to homomorphism counts

-




Homomorphisms
» Let P = (Vp, Ep,Lp) and G = (V, E, L) be graphs.

0‘0

= A function & : Vp = V15 a homomorphism 1t 1t 1s edge preserving
(v,w) € E, = (h(v), h(w)) € E; and label preserving.

L0 X7
vy

64
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Homomorphism counts

efine HOM(P, G) := { all homomorphisms from P to G}

efine hom(P, G) := |HOM(P, G) |.

- Q-1 ~AR

Hvertices = 4 2#edges=10 70=2-234+2.33

65




Homomorphisms

o

>

aker notion than subgraph isomorphism (see later).

e
- Underlies semantics of many graph query languages.

o

= Algebra of homomorphism counts: A rich and active area of
research.

Back t6(g MPNNSs




MPNNs and hom counts

Theorem (Dell et al. 2019, Dvorak 2010) -
' hom(7, G) = hom(T, H) tor all trees T

if and only 1f

 colour reinement cannot distinguish G from H. i

Corolarv

- hom(T, G) = hom(T, H) tor all trees T 1f and only 1f no
MPNN can distinguish G from H.

Follows from p(cr) p(MPNN)

<= MPNNSs can only detect tree information from a graph!

Z.. Dvorak: On recognizing graphs by numbers of homomorphisms (2010) 67
Dell et al. Lovdsz meets Weisfeiler and Leman (2018)
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Complexity

Message passing
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Beyond distinguishing power?

= Approximation properties (universality)

o

- Logical expressiveness

> (Generalization

o

69




Approximation properties

= Equip set ot graphs & with a topology and assume that #Z consists
of continuous graph embeddings from & to R.

< C .
Let € C & be a compact set of graphs. IR A

'Theorem (Azizian & Lelarge 202 1, Gd utter - ) “

I 7 is , then # can

approximate any continuous function 2 : € — R satistying

p(#) € p(iE}).

<= (an be generalised to general embeddings with output space |

W. Azizian and M. Lelarge: Characterizing the expresswe power of invariant and equivariant graph neural networks (2021) 70
G. and J. Reutter: Expressiweness and approximation properties of graph neural networks (2022)




MPNNs: Approximation

Theorem (Azizian & Lelarge 2021. G. and Reutter 2022)

- On compact set of graphs, MPNNs can approximate any continuous graph

embedding E : € — R satistying
p(colour refinement) C p({®})

T o p(MPNNs) = p(colour refinement)

0‘0

- Update tunctions can be used to approximate product and take linear

combinations of MPNNs

= Intricate relation between distinguishing power and approximation properties

W. Azizian and M. Lelarge: Characterizing the expresswe power of invariant and equivariant graph neural networks (2021) el
G. and J. Reutter: Expressiweness and approximation properties of graph neural networks (2022)




Universality and graph 1somorphism
Theorem (@laen ec al 01

In order tfor a class of methods to be able to approximate

, the class of methods should be able to distinguish any
two oraphs. -

Proof
Minimal s1ze p(#Z) C p({E})

1

(G.H) € p(¥) e G2 H

72
Chen et al.: On the equivalence between graph 1somorphism testing and function approximation with GNNs (2019)




Logical expressiveness

o

- Finite variable logics.

= kxtension with Presburger quantifiers.

73




Colour refinement (again)

I mentioned that p(colour reiinement) has many characterisations.

Of interest 1s also a logical one, 1in particular First-order logic with 2
variables and counting quantifiers @

o) = 3%y (ECx,y) A 325 (EG,0) ALW) )
binary edge predicate unary label predicate

Given graph G, vertex v € Vi, satisfies ¢: 1t has at most 5 neighbours
(G,v) F o each with at least to neighbours labeled “a”

 Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992) 74
i} M. Grohe. The logic of graph neural networks (2021

—— i - — - . p— .




Colour refinement and C,

Theorem (Cai et al. 1992)
'lwo graph shave the same colour histogram after t iterations of

colour refinement if and only if they satisty the same C,
sentences of quantifier depth ¢

p(colour refinement) = p(MPNNs) = p(C,)

What about vertices?

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992) e
M. Grohe. 1he logic of graph neural networks (2021




Which unary G, formulas can MPNNs express?

Z can G-express 2 1t there exists a £ € # such that
forall G € €,v € Vg : E(G, V) = E(G, V)

<= Not all: ¢p(x) := L,(x) A YL (y)

I am blue and there exist
a red vertex somewhere. ..

76




Which unary G, formulas can MPNNs express?

o

» Not all: ¢p(x) := L,(x) A YL (y)

o

- Graded modal logic: syntactical fragment of C, in which quantifiers
are of the form 3= (E(x, y) A qo’(y))

Theorem (Barcel et al. 2020)
- Let ¢(x) be a unary FO formula. 'T'hen, ¢(x) 1s equivalent to a

- graded modal logic tormula if and only if @(x) 1s expressible by
the class of MPNNs.

3¢ € MPNNs : VG € &,Vv e V. : (G,v) E ¢ < EG,v) = 1

7
Barcelo et al.: 7he logical expressweness of graph neural networks (2020)




Role of activation tunctions

' heorem

Let p(x) be a unary FO formula. Then, ¢(x) 1s equivalent to a graded
'modal logic formula if and only if ¢(x) 1s expressible by the class ot

MPNNE.

= Proot relies on sign, RelLU, trRelLU activation function.

'Theorem (Sammvy Khalife 2023)

' I'here 15 a ¢(x) 1n graded modal logic that 1s not expressible by MPNNs

using polynomial actwation functions.

78
Sammy Khalite. GNNs with polynomial activation functions have limited expresswity (202
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MPNN+: Extended MPNNs

<= (an we extend MPNNs such that all G, formulas (including
p(x) ;= L,(x) A JyL(y)) can be expressed?

£0(G, v) = Upd(£4-D(G, v), Agg®({{£"(G, ), £V (G, w) | u € NgO)}) )

Add global aggregation 1n every layer j

£0(G,v) = Upd®( £4-0(G, v), Agg ({{E~1(G, ), £-D(G,u) | u € N},

Global” ({E(G,u) | u € VG}}))

' 79
1} Barcelo et al.: The logical expressiveness of graph neural networks (2020)

—— — . P— il .




MPNNs+

Theorem (Barcelc’)“ el 20203 |

EverY unary G, tormula ¢(x) 1s expressible by the class of MPNNs+

= 'l'he corresponding colour refinement version 1s known as the one-
dimensional Weisteiler-LLeman algorithm or 1-WL on vertices.

p(1-WL) = p(MPNNs+)

30
Barcelo et al.: 7he logical expressweness of graph neural networks (2020)
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Wait a moment! MPNNs go easily beyond FO!

1 vhad d than bl 1chb
trReIU( Z P (u) — Z Pb(u)) :{ Vv had more re an blue neighbors

e Smme 0 otherwise

T'his property 1s known not to be expressible as an FO formula ¢(x)

Proof

By means of locality ot FO
or
By playing so-called Erhenfeucht-Fraisse game.

| 82
) L. Libkin. Elements of Finite Model Theory (2004)

— i - — - . p— .
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Solution? Add more complex quantifiers!

p(x) = 3y (E(x,y) AL(y)) ——p @)= @#[EXx,y) ALY 2 2)

true when x has more than two
red neighbours

@(x) = (#,[E(x, y) A L(y)] — #[E(x,y) A Ly(y)] = 0)

true when x has more red than
blue neighbours

k
P(x) = (Z aift [E(xX,y) Ay (0] <0 ) true when the neighbours of x

i=1 satisty the linear inequality

Presburger quantifier

: 33
1} Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural networks via logical characterizations (2024)

— i pr— - . p— .
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[.ocal and Global

px) = ( y[E(X, V) AL(y)] 2 2) true when x has more than two
red neighbours

p(x) = (#|L()] — #EX,y) AL(Y)] =0) true when x has all red nodes

j j in graph as neighbours

olobal counting  local counting

o

- Extending 'Iwo-variable FO with Presburger quantifiers:
= New logics: MP (global) and 1.-MP (local)

o

34




Unitorm characterisation ot sum-(GNNs

Theorem (Benedikt et al. 2024)

T'he language 1.-MP 1s equivalent to sum-GNNs using

Allowing global aggregation in sum-GNNs, equivalence to MP.

a vertex has more red than blue

neighbours trRelU ( Z P(u) — Z Py(w))
l UEN(V) UEN(V)

[-MP expressible =P  sum-GNN expressible

@(x) = (#,[E(x, y) A L(y)] — #,[E(x,y) A Ly(y)] = 0)

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural networks via logical characterizations (2024)

— p—— — pra— — .




Unitorm characterisation ot sum-(GNNs

'Theorem (Benedikt et al. 2024 -

T'he language 1.-MP 1s equivalent to sum-GNNs using

Allowing global aggregation in sum-GNNs, equivalence to MP.

<= What about RelLU?? ''his activation 1s not &

eventually constant. T heorem fails.
<= What about max, avg as aggregation functions? 2=




(Generalisation and expressivity

<= We want the generalisation error [Lg(&) — Lo (&) to be small.

Theorem (Vapnik and Chervonenkis 94) -
For 6 > 0, with probability 1 — é (1in our selection of training data
I of sizem)tforall £ € # :

2d 10 log(
La(8) — Lg () <

g(—)
where d 1s the of H

Vladimir Vapnik and Alexey Chervonenkis: The uniform convergence of frequencies of the appearance of eveﬁz to their probabilities (1964)

— p—— — pra—




V(C dimension

= A set of graphs Gy, ..., G, 1s shattered by an embedding class #

if, for any labeling y,, ...,y, € {0,1}4
we can find an embedding ¢ € # (which may depend on the labeling)

such that &(Gy) = yy, ..., &8(G)) =y,

= V(U dimension= maximal number ot graphs that can be shattered.

38




V(C dimension

<+ V(U dimension= maximal number of graphs that can be shattered.

Let us assume we consider graphs up to size n: &,

'|'heorem

The VG dimension of MPNNs on &, 1s by the number of -

oraphs in &, that can be distinguished by MPNN:G.

We can also show matching lower bound.

Corollary

T'he VG dimension of MPNNs on all graphs 1s unbounded.

39
Christopher Morris, F. Geerts, J. Tonshoff, Martin Grohe: WL meet VU (2023)
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Colour complexity

It color rehimement does not need many colours for a graph: low colour complexity

We can get smaller bounds on number of distinguished graphs.

v

VC dimension 1s small - Less training data needed

/\
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[ ]
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< {2

[ T1

JAVAN
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D> 0¥

> {2

16,8

Do I» £

——

'} Christopher Morris, E Geerts, J. Tonshoff, Martin Grohe: WL meet V(' (2023)

on 2-regular graphs only one colour is needed.

MPNNs only distinguish based on size

90
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Continuity and covering numbers
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(Generalisation and expressivity

Only tip of 1ceberg

Understanding precise impact of expressiveness on
generalization, not well understood yet

G|




Questions?

92




More powertul methods

Boosting expresswe power

93

— ———
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Rl o

Expressiveness

More expressive MPNNs?

T TR s e e e e S s e e

GCNg VIPNNs
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Complexity 94

Message passing




How to beyond MPNNs?

T'heoretical research guides architecture design!

o

- Feature augmentation

= subgraph GNNE.

= Higher-order MPNNs

95




R T R ) e . . I S T (A N R e e iy, W R TR e e R R R R e

o R

1011

Feature Augmentat

Boost the expresswe power by adding information

96
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Feature engineering

< Deep learnmg and MPNNs have replaced “old school” teature

engineering approach.

Number of edges

Number of cycles ot length 5 = |

o 0:0 oto

Centrality measures

d =—p SVM

= MPNNs were supposed to learn such teatures automatically ..

Sl
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Idea #1: Adding expressive features

Theorem

Pecals hom(T', G) = hom(T', H) tor all trees T 1t and only 1f

no MPNN can distinguish G from H.

<= What it we add subgraph information betore doing message-

passing? T

More than trees

98
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Structural encodings

I.Choose collection of rooted graph patterns/motits
P = {P!,...,P")

—

2.Choose how to match subgraphs in & with data graph G

3.Add count of matches to vertices as extended features.

3

9
OO0
8°6:

R R g e, W R TR e T BB A SRR R e S il S R i




Matches

r
el
P" = (Vp, Ep, {1}) {/';

w:Vp— Ve C Ve containing v

<= Homomorphism: edge preserving Py
e {';Ltz hom(P’, GV)
= Subgraph isomorphism: bijjection , edge |
preserving

subiso(P’, GV)
< Induced subgraph isomorphism:

bijection, edge preserving (both ways) ndsubiso(P”, G")

T

Counts

100




P-MPNNs

< Add structural encoding as vertex features and run MPNN
o el o
P-MPNN S

EO(G,v) := Hot-one encoding of label of vertex v + hom(P;, G"), ..., hom(P,, G")
£0(G,v) = Upd®( £91(G, ), Agg® ({{£1(G, v), E/(GRQ, hom(P}, G, ... hom(P7, G) | u € N} ) )

1} Barcelo et al.: Graph neural networks with local graph parameters. (2021)

——

p(G) := Readout( {{£DG,v) | v € Vi1})

!

hom counts of patterns

<= Did we 1ncrease expressive power?

101




: 2 ~ 0)
(2) 2) () 0
7= () u%j“ g-lis
G H,

(© = hom count

o

- We have seen that these graphs equivalent for colour refinement but

clearly not for A-MPNN:s.

o

= D0, Increase 1n power!

o

- What 1s their precise expressive power?

102




P-MPNNs: Expressive power

Theorem

hom(7, G) = hom(T, H) tor all SP—pattern trees T 1f

- and only if no P-MPNN can distinguish G from H.

@:{C&} og&@ﬁ@@% &%8&%@?&%§

A — T ——

|

SET (F) MAE
NoONE 0.4740.02 L :
() S Take tree: add 1n each tree vertex
: {C4} 0.344+0.02 .
/1nc dataset {Cs} 0.3140.01 COPICS ol rooted patterns

e e 0.28+0.01
58 breraty Cs}  0.23+0.01
{Cg ..... 010} 1 @#2:&0.01

Barcel6 et al.: Graph neural networks with local graph parameters. (2021)
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Expressiveness

The larger and complex & = more complexity counting
= more expressive power

o -MPNNs

Lwr, VPN .
Colour e 7mmmmmmmmsmrmrmmms s mmmmn e

GCNe @VIPNNs

@
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Idea #2: (Random) Vertex identifiers

= Message-Passing 1s only based on vertex features and adjacency
information.

o

> 'Iwo difterent vertices with the same vertex features will be treated
the same (1f they have the same colour 1in colour rehinement).

What it we add vertex identifiers?

105
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Vertex 1dentifiers

Selt 1dentification: usetul for cycle detection

(0 <i>> <| > <?>

In terms of colour refinement: every vertex has a unique colour

106




rMPNNs

<+ How to choose 1identifiers? Common choice 1s at random!

= With high probability random features are vertex identifiers

'l heorem

rMPNNs approximate any invariant graph/vertex

embedding with high probability

<= Invariance of computed embedding only 1n expectation!

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Abboud et al. : The surprising power of graph neural networks with random node imtialization. (2021) 107
Sato et al.: Random features strengthen graph neural networks (2021).
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o -MPNNs
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0‘0

Idea #3: Use global information

Extract global graph information and use 1t as positional encodings
of vertices

/
X4

Spectral information

o

= Shortest paths (distance information)

/

Biconnectivity (connectivity information)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)

¥ Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] :

109

Pa——




Spectral graph theory

V/
X4

Figenvalues/vector: M - v = Av

/
X4

For adjacency matrices: Figenvalues and eigenvectors of Laplacian

L¢

( G ] | S []\ (2
e e e ] [P R 0
N e S | 0 0 0
e e | 0
-1 -1 0 -1 3 0 0

=
Q

>
Q

= 2D RO D

= — T — I —
= — T — T — I
= Rl — T — R
= T I —
=
=
= S - I - .-
=T T R R I
= — T T — T
—

= Laplacian eigenvalues and vectors contain connectivity information

= multplcity 1st eigenvalue ~ connected components.

] Images: Wikipedia 110
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Spectral MPNNSs

Add eigenvectors as vertex features

. = 0.037 o®, 1, =01 Eigenvector ¢
R e e colormap
= \ ‘\ \| ? i ‘ maX
./ = 1 3 >W . \ .
= o

- -Mmax

bPop1 Py ®o b1 <I>z ¢ Pn-1
Node N| B Node N

H EgEN

a) b) eee
Node 2 [ | Node 2
Nodel L1 L1 LI Node 1
......... il
/10 = A A A Ayv—q1  frequencies

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021) L11




Spectral invariant

Pl Pl - Pl
A=Z,1Pﬂ Pt - =
UIUISC

: P Dy Dy

Spectral invariant

V= specinv(v) o= (/Iap\/}v’ {{péu ‘ = VG}})’IEA

Graph properties
- Number of length 3, 4, or 5 cycles, whether a graph is connected
and the number of length k closed walks from any vertex to itself

Beyond 1-WL./Colour Refinement
152

pr— - . p— .

| Cvetkovic et al.: FEagenspaces of graphs (1997)
i} M. Furer: On the power of combinatonal and spectral mvanants (2010)




SpecMPNN

Spectral invarianti
v = specinv(v) := (4, pj, {Ph | 4 € VoI en

Variation used in Signet and BasisNNet = B2 PR sYe 180816

Can be using combination with any MPNN

Theorem (Seppelt Rattan (2023 )
- specMPNN bounded in power by (1,1)-WL and strictly lower than 2-WL.

We discuss these WL's later

On the Expressive Power of Spectral Invariant Graph Neural Networks” by Bohang
Zhang, Lingxiao Zhao, Haggai Maron (2024) JEabi:
G. Rattan and 'I. Seppelt: Weisferler-Leman and Graph Spectra (2023
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Expressiveness
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ubgraph GNNs

Turmng one graph into many

EL5
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(seneral 1dea

o

- Colour refinement equivalent graphs may contain colour refinement
inequivalent subgraphs.

E: ‘D;% C ﬁ:i Colour refinement C E:

—_—

S TR e

= View graphs as a collection ot subgraphs then run MPNN

116
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- edge marking |>\ e ® |
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Vertex—dSubgraph Aggregation

I;/ )_ Ii M_> L )_4 Vertex Aggregation .
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T'he subgraph GNN “wave”

Vertex—Subgraph Aggregation Subgraph— Vertex Aggregation
k-OSAN?

Reconsﬁudmn NGNN

Do o

DSSAGNN

Bevilacqua et al: Equwariant subgraph aggregation network (2022) All pr()vably more €Xp re SSiV€ th an MPN N S>x<

Cotta et al.: Reconstruction for powerful graph representations (2021)

Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022 )
W Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)

Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)

¥ You et al.: Identity-aware graph neural networks. (2021)

§ Zhang and P. Li. Nested graph neural networks (2021) (49
1§ Zhao ctal.: From stars to suboraphs: Uplifting any GNN with local structure awareness (2022




T

Selection policies

DS-GNN - vertex deletion ID-GNNs - marked ego-nets
- edge deletion
- €g0 nets GNNs-AK - ego-nets

- marked ego-nets

k-OSAN - size k subgraph marking

Rec-GNN - k-vertex deletion

Popular/ettective: ego-nets

NGNN - ego-nets <1 &

is
|>._) <£

;51 2
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k-OSAN

Theorem (Oian et al. 2022)
o k-OSANs and k-OSANS' encompass almost all subgraph

methods with selection policy involving k vertices.

o Strictly bounded 1n expressive power by (k+1)-WL
® [ncomparable to k-W L.

®o
*
®o
e*
®o
*

if 2-WL cannot distinguish graphs, then neither can 1-OSANs

2-WL can distinguish more graphs than 1-OSANS

T'here exists graphs than can be distinguished by 1-OSANSs but not by
MPNNs, and vice versa, there exists graphs that can be distinguished by

MPNNs but not by 1-OSANs

Qian et al.: Ordered subgraph aggregation networks. (2022)

o)




Subgraph GNNs

<= (Jan always ensure to be strictly more expressive than MPNNs by
including original graph 1n batch.

= 'Iractability only when easy subgraph policies are used, 1.e., leading
to a small number (linear) of subgraph:s.

<= Seems a good balance between complexity and expressiveness

(4.




rMPNN
&
Bl &y W
E o (K-1-OSAN
o -MPNNs
WL JA ... 000
R R e @ Signnet S e
? ® spccMPNNS DS-GNN/1-OSAN/1-OSAN?
S|iowr, MPNN+s ® GNN-AK
: g CéIéﬁ}'Kéiﬁ'e}h'e'ﬁt' """"""""""""""""""" .NGNN """""""""""""""""""""""""""""""""""""
O1GC PNN ®
AKX Ja o[ D-GNN
= 4 GIN . eDropoutGNN
Complexity 123




K-dimensional Weisteiller-LLeman

Boosting expressiwe power by higher-order message-passing

594
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More powertul heuristic

Apply heuristic on G and H: If Heuristic say

“no” then G 2 H, otherwise we do not know. ARE THESE N e
[ GRAPHS cor N\
| ISONORPHIC | ~ |

SAYS
NO!

4

G H?

T — —

Colour refinement —>No—G # H

l

|- WL———No—~G £ H

'
2-WL————No—>G # H

=
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Theorem

o

Idea: hlgher-order GINNs

(Dell il 2018 .

hom(T, G) = hom(T, H) tor all graphs T of tree width k

if and only 1f
k-WL cannot tell apart G trom H

[-WL =g MPNNs
j j k-MPNNs will detect more graph

@ information
than MPNNs5s

k-WL. =% k-MPNNs

Z.. Dvorak: On recognizing graphs by numbers of homomorphisms (2010) 126

Dell et al. Lovdsz meets Weisfeiler and Leman (2018)




k-Folklore GNNs (k-F(GNs)

-
EN(G, Vis ees Vi) 1= MLPP( Z HMLP(zt)(Cf(t_D(G, Vs wees Victs Uy Vig 15 ++05 Vi)
=il

/ T

k-vertex embedding  Global aggregation  Uses multiplication

Expressive power?

'Theorem (Maron et al. 2019)., Azizian and Lelarge 2021)

p(k — FGNN) = p(k-WL)

 Maron et al.: Provably powerful graph networks (2019) 2%

W. Azizian and M. Lelarge. Characterizing the expressive bower of mvarniant and equivariant sraph neural networks (202 1




A simpler architecture:

k-(GNNs

f(t)(G’ vl’ PP Vk) .= 0 50_1)(G9 Vla R Vk)w(lt) ol <Z Z f(t)(Ga Vla

Expressive power?

Morris et al.: Weusferler and Leman go neural: Higher-order graph neural networks. (2019)

Theoiem oret al 193 *

l=1 MEVG

*

Global aggregation

p(k — GNN) = p(k-WL)

128
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e MPNN
®(k+1)-GNNs
. Ay = W gk-lGhNe -
®-GNNs o (K-1-0SAN @ k-FGNNs
o (K-1)IGNs
e e S e
2 ®2-GNNs  oDss-GNN |
clanwe 4 @ Signnet - e
21w MPNN-e specMPNNs S e
: g R @ rsbdostil i el o NGNN """"""""""""""""""""""""""""
LIGCNg dMPNNs ® Reconstruction GNN
& \o oVl _
S o ol D-GNN
= 4 GIN . eDropoutGNN
Complexity 129 - 8




Questions?
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And look ahead

-
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What to use?

Subgraph Feature Augmentation Higher-order
+ Small graphs = Large training + Graphs are small
datasets ,
50 = LEfhciency not
compromise in <+ |nvariance not essential
general important

= Expressivity

[£52




Expressiveness

< A lot of recent
pProgress

<= WL hierarchy needs

better reconciliation
with practice

< Hom count
characterisations

< Relational

Gary et al. :Generalization and Representational Limuts of Graph Neural Networks (2020)
8 Morris et al: WL meet VG (2023

Road ahead

Connection with Learning??

<= Optimisation and
traiing
unexplored

133

< (Generalisation
properties

= Sample
ethiciency?




Conclusion

o

- Study of expressive 1s beautitul area of research for ML researchers

/
X4

Combines theory and practice in an elegant way

o

- Many unresolved questions ...
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