

The (expressive) power of graph learning

Floris Geerts (University of Antwerp)

Course

- * Is about recent advances in graph learning.
- * With an emphasis on the expressive power of learning methods.
 - * Self-contained (too some extent).
 - * Mostly high-level, but also low-level, so basically all levels.
 - * Not all methods or related works are covered.
 - * Emphasis on theoretical aspects.

About the speaker

- * Background in mathematics, database theory and expressive power of query languages.
- * Since 2018, expressive power of linear algebra.
- * Natural move to the study of expressive power of graph neural networks.
- * Current focus is on generalisation and relational learning.

Outline

- * Graph learning and expressive power
- * Message Passing Neural Networks
- * Boosting power:
 - * Feature augmentation
 - * Subgraphs
 - * Higher-order message-passing

Graph learning

What is it?

Why learning on graphs?

Graphs are everywhere!

Graphs: One definition to rule them all

- * Graph $G = (V_G, E_G, L_G)$ with
 - * Vertex set V_G
 - * Edge set $E_G \subseteq V_G^2 := V_G \times V_G$
 - * Vertex labels: $L_G: V_G \to \Sigma$

Vertex features \mathbb{R}^d

Hot-one encoding

Adjacency matrix representation

- * Graph $G = (V_G, E_G, L_G)$ can also be represented by adjacency matrix A_G and feature matrix F_G
- * Let $n = |V_G|$ be the number of vertices. Let $v, w \in [n] := \{1, ..., n\}$.

adjacency matrix
$$A_G \in \mathbb{R}^{n \times n} : (v, w) \mapsto \begin{cases} 1 & (v, w) \in E_G \\ 0 & \text{otherwise} \end{cases}$$
 feature matrix $F_G \in \mathbb{R}^{n \times d} : v \mapsto L_G(v)$

* To turn graph into matrix, one needs an ordering on the vertices.

Graph learning

Embeddings

S = all graphs

 \mathcal{I} = all vertices

Y = output space

- * Graph embedding: $\xi: \mathcal{G} \to \mathbb{Y}$
- * Vertex embedding: $\xi: \mathcal{G} \to (\mathcal{V} \to \mathbb{Y})$
- * p-Vertex embedding: $\xi: \mathcal{G} \to (\mathcal{V}^p \to \mathbb{Y})$

Graph embeddings

- * Graph embedding: $\xi: \mathcal{G} \to \mathbb{Y}$
- * Graph classification/regression

Vertex embeddings

- * Vertex embedding: $\xi: \mathcal{G} \to (\mathcal{V} \to \mathbb{Y})$
- * Vertex classification/regression. For example, prediction of subject of papers.

p-Vertex embeddings

- * p-Vertex embedding: $\xi: \mathcal{G} \to (\mathcal{V}^p \to \mathbb{Y})$
- * For example, 2-vertex embeddings: link prediction

Graph learning tasks

Applications

- * Vertex classification categorise online user/items, location amino acids (protein folding, alpha fold)
- * Link pred LEARNING HAS aph completion, recommended become key a side effect discovery DATA
- * Graph clas COMPONENT ecule property, drug discovery
- * Subgraph tasks: traffic prediction

Graph learning

* We want to learn an unknown embedding $\Xi: \mathcal{G} \to (\mathcal{V}^p \to \mathbb{Y})$

What does this mean???

* The embedding \(\mathbb{E} \) is partially revealed by means of a training set

$$\mathcal{T} := \left\{ (G_1, \mathbf{v}_1, y_1), \dots, (G_\ell, \mathbf{v}_\ell, y_\ell) \right\} \subseteq \mathcal{G} \times \mathcal{V}^p \times \mathbb{Y}$$

$$\Xi(G_1, \mathbf{v}_1) \qquad \Xi(G_\ell, \mathbf{v}_\ell)$$

Training sets

(molecule, yes/no)

Graph classification

(cora, paper, topic)

Vertex classification

Link prediction

(social, p_x , p_y , yes/no)

Graph learning: hypothesis class

* We want to find the <u>best model</u> consistent with training set T

What does this mean???

- * Models are selected from an hypothesis class H
- * In the graph setting \mathcal{H} consists of <u>embeddings</u>

Hypothesis classes

MPNN PPGN GSN 2-IGN

×1000

Graphormer GATs CayleyNet

CWN $\delta - k$ -GNNs GIN

GCNs

ChebNet Dropout GNN

k-GNNs

k-IGNs GraphSage k-SAN

Id-aware GNN

Hypothesis Class Explosion

Count	
Large Language Models	318
Reinforcement Learning	201
Graph Neural Networks	123
Diffusion Models	112
Deep Learning	110
Representation Learning	107

What's new?

flatten

$$Y = \mathbb{R}^{10}$$

(0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,1,0)

(0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0)

permuted adjacency matrices

Deep neural network

Support vector machines

Graph learning

Classical embedding methods depend on representation

E.g., think of MultiLayerPerceptron on vector representation of flattened adjacency matrix

A desired property: Invariance

- * Embeddings should be invariant, that is, independent of the chosen graph representation.
- * Invariance is defined in terms of graph isomorphisms.

$$G \cong H$$

$$G = (V_G, E_G)$$

$$G = (V_H, E_H)$$

* The mapping π is a bijective vertex function satisfying $(v, v') \in E_G \iff (\pi(v), \pi(w)) \in E_H$ also $L_G(v) = L_H(\pi(v))$ must hold.

Invariant embeddings

for all π , G and $\mathbf{v} \in V_G^p$: $\xi(G, \mathbf{v}) = \xi(\pi(G), \pi(\mathbf{v}))$

Isomorphism

(1,4) and (B,C) have same embedding in \mathbb{Y}

We typically assume invariant embedding methods (unless said otherwise)

Graph learning: ERM

Best one! ξ

- * Given training set T and hypothesis class H
- * Empirical risk minimisation:

Find embedding ξ in \mathcal{H} which minimises empirical loss

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \mathsf{loss}(\xi(G_i, \mathbf{v}_i), y_i))$$

Loss function is a mapping from $\mathbb{Y} \times \mathbb{Y} \to \mathbb{R}$

Loss functions

* Choice depends on learning task (regression, classification,...)

* L1:
$$loss(y_{predicted}, y_{true}) := |y_{predicted} - y_{true}|$$

- * L2: loss($y_{predicted}, y_{true}$) := $(y_{predicted} y_{true})^2$
- * (Binary) cross entropy: $loss(y_{predicted}, y_{true}) := y_{true} log(y_{predicted} + (1 y_{true}) log(1 y_{predicted})$

Graph learning

* Graph learning systems solve ERM using back propagation and gradient descent...

$$\hat{\xi} : \arg\min_{\xi \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} loss(\xi(G_i, \mathbf{v}_i), y_i))$$

What one really wants

- * Simply predicting labels for training data is insufficient.
- * We want to predict labels for graphs not in the training data.
- * We will assume the presence of distribution D over $\mathcal{G} \times \mathbb{Y}$.

We do not know the true distribution D, as it represents real-world unseen data.

Risk minimisation

* Risk minimisation: Find embedding $\tilde{\xi}$ in \mathcal{H} which minimises expected loss over \mathcal{D} :

$$\tilde{\xi} := \underset{\xi \in \mathcal{H}}{\operatorname{arg \, min} \, \operatorname{Prob}_{(G,y)}} \mathbb{Z}[\xi(G) \neq y]$$

* RM focuses on minimising errors over all the data according to their distribution.

Generalisation Error

- * We want to find a hypothesis $\xi \in \mathcal{H}$ that does well on the training data (small empirical loss $L_{\mathcal{T}}(\xi)$)
- * But also has small expected loss $L_{\mathcal{D}}(\xi)$

- * We want the generalisation error $L_{\mathcal{D}}(\xi) L_{\mathcal{T}}(\xi)$ to be small.
- * Statistical learning theory provides bounds on training data guaranteeing small generalisation error.

Generalisation error

* We want the generalisation error $L_{\mathcal{D}}(\xi) - L_{\mathcal{T}}(\xi)$ to be small.

$$L_{\mathcal{D}}(\xi) - L_{\mathcal{T}}(\xi)$$
 to be small

Theorem (Vapnik and Chervonenkis 1964)

* For $\delta > 0$, with probability $1 - \delta$ (in our selection of training data \mathcal{T} of size m) for all $\xi \in \mathcal{H}$:

$$L_{\mathcal{D}}(\xi) - L_{\mathcal{T}}(\xi) \le \sqrt{\frac{2d\log(\frac{em}{d})}{m}} + \sqrt{\frac{\log(\frac{1}{\delta})}{2m}}$$

* where d is the VC dimension of \mathcal{H}

Graph learning

* Graph learning systems solve ERM using back propagation and gradient descent...

$$\hat{\xi} : \arg\min_{\xi \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} loss(\xi(G_i, \mathbf{v}_i), y_i))$$

Our focus will be on the expressive power of hypothesis classes \mathcal{H}

Expressive power

- * Which embeddings can be expressed by embeddings in #?
- * Which embeddings can be approximated by embeddings in #?
- * Which inputs can be separated/distinguished by embeddings in \(\mathcal{H} ?
- * What is the relationship between expressiveness and generalisation of \mathcal{H} ?

Notions of expressivity

* Let $\Xi: \mathcal{G} \to (\mathcal{V}^p \to \mathbb{Y})$ be a *p*-vertex embedding

 \mathcal{H} can express Ξ if there exists a $\xi \in \mathcal{H}$ such that for all $G \in \mathcal{C}$, $\mathbf{v} \in V_G^p$: $\xi(G, \mathbf{v}) = \Xi(G, \mathbf{v})$

- * Let $\Xi: \mathcal{G} \to \{0,1\}$ indicator function for connected graphs.
- * Can we find hypothesis in $\xi \in \mathcal{H}$ such that $\xi(G) = \Xi(G)$ for all graphs G

Notions of expressivity

Separation/distinguishing power of #

$$\rho(\mathcal{H}) := \{ (G, \mathbf{v}, H, \mathbf{w}) \mid \forall \xi \in \mathcal{H} : \xi(G, \mathbf{v}) = \xi(H, \mathbf{w}) \}$$

- * All pairs of inputs that cannot be separated by any embedding in H
 - * Can we find hypothesis in $\xi \in \mathcal{H}$ such that $\xi(G) \neq \xi(H)$ for any connected graph G and disconnected graph H?

Distinguishing power

- * Strongest power: # powerful enough to detect non-isomorphic graphs
- * Weakest power: # cannot differentiate any two graphs

Distinguishing power

* Allows for comparing different classes of embeddings methods!

 ρ (methods1) $\subseteq \rho$ (methods2)

Methods 1 is more powerful than Methods 2 Methods 2 is bounded by Methods 1 in power

 ρ (methods1) = ρ (methods2)

Both methods are as powerful

* Allows for comparing embedding methods with algorithms, logic, ...

Expressive power in ML community

- * Focus has been on distinguishing power of classes #of embedding methods.
- * Goal is to characterise $\rho(\mathcal{H})$ in a way to sheds light on what graph properties a learning method can detect/use.
- * We see an example shortly for \mathcal{H} = the class of Message-Passing Neural Networks (MPNNs)
- * Recent work addresses uniform expressiveness.

Expressive power in ML community

- * Search for increase in expressive power has led to surge of new methods of graph learning.
- * Despite theoretical underpinning... still a bit of alchemy to find the right method...

Questions?

Message Passing Neural Networks

(Still) the most popular type of Graph Learning Architecture

A little graph embedding history

Message passing neural networks

A class of invariant vertex and graph embedding methods

Scarcelli et al.: The graph neural network model (2005),

Hamilton et al.: Inductive representation learning on large graphs (2017)

Gilmer et al.: Neural message passing for quantum chemistry (2017)

Idea behind MPNNs: Neighbour aggregation

Every vertex defines a computation graph

Neural networks

MPNNs: Vertex embedding

$$\xi(G, v) := \xi^{(L)} \circ \xi^{(L-1)} \circ \cdots \circ \xi^{(0)}(G, v)$$

Message Passing Layers $\xi^{(i)}(G, v) \in \mathbb{R}^d$

 $\xi^{(0)}(G, v) := \text{Hot-one encoding of label of vertex } v \in \mathbb{R}^d$

$$\xi^{(t)}(G,v) := \mathsf{Upd}^{(t)}\Big(\xi^{(t-1)}(G,v),\mathsf{Agg}^{(t)}\big(\{\{\xi^{(t-1)}(G,v),\xi^{(t-1)}(G,u)\mid u\in N_G(v)\}\}\big)\Big)\in\mathbb{R}^d$$

Message Passing between v and its neighbours $u \in N_G(v)$

neighbourhoods

Update and aggregate function contain learnable parameters (NNs)₆

MPNNs: Graph embedding

$$\rho(G) := \rho \circ \xi^{(L)} \circ \xi^{(L-1)} \circ \cdots \circ \xi^{(0)}(G, v)$$

$$Readout$$

$$\rho(G) := \operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_G\right\}\right\}\right) \in \mathbb{R}^d$$
 Has learnable parameters
$$\operatorname{Aggregation\ over\ \underline{all\ vertices}}$$

Typical choices for update, aggregate and readout: Multilayer Perceptrons

MPNN example: GNN 101

- * Non-linear activation function σ (ReLU, sign, sigmoid, ...)
- * $\mathbf{F}_{v}^{(t)} \in \mathbb{R}^d$ denotes embedding of vertex v

- * Weight matrices $\mathbf{W}_{1}^{(t)} \in \mathbb{R}^{d \times d}$ and $\mathbf{W}_{2}^{(t)} \in \mathbb{R}^{d \times d}$ and bias vector $\mathbf{b} \in \mathbb{R}^{1 \times d}$

$$\mathbf{F}_{v\bullet}^{(0)} := L_G(v)$$
 — Embedding vertex labels

$$\mathbf{F}_{v \bullet}^{(t)} := \sigma \left(\mathbf{F}_{v \bullet}^{(t-1)} \mathbf{W}_{1}^{(t)} + \sum_{u \in N_{G}(v)} \mathbf{F}_{u \bullet}^{(t-1)} \mathbf{W}_{2}^{(t)} + \mathbf{b}^{(t)} \right)$$

$$\mathbf{F}_{v \bullet}^{(t)} := \sigma \left(\mathbf{F}_{v \bullet}^{(t-1)} \mathbf{W}_{1}^{(t)} + \sum_{u \in N_{G}(v)} \mathbf{F}_{u \bullet}^{(t-1)} \mathbf{W}_{2}^{(t)} + \mathbf{b}^{(t)} \right)$$
Matrix form
$$\mathbf{F}^{(t)} := \sigma \left(\mathbf{F}^{(t-1)} \mathbf{W}_{1}^{(t)} + \mathbf{A} \mathbf{F}^{(t-1)} \mathbf{W}_{2}^{(t)} + \mathbf{B}^{(t)} \right)$$
neighbours

adjacency matrix

Image: TheAiEdge.io

GNN 101: Graph embedding

* Weight matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ and and bias vector $\mathbf{b} \in \mathbb{R}^{1 \times d}$

$$\mathbf{F}^{(t)} := \sigma \left(\sum_{v \in V_G} \mathbf{F}^{(L)} \mathbf{W} + \mathbf{b} \right)$$
Aggregation over all vertices

ERM: Find best parameters $\mathbf{W}_{1}^{(1)}, ..., \mathbf{W}_{1}^{(L)}, \mathbf{W}_{2}^{(1)}, ..., \mathbf{W}_{2}^{(L)}, \mathbf{W}, \mathbf{b}^{(1)}, ..., \mathbf{b}^{(L)}, \mathbf{b}$

Two more examples of MPNNs

* Graph Isomorphism Networks (GIN)

$$\mathbf{F}_{v\bullet}^{(t)} := \mathsf{MLP}^{(t)} \left((1 + \epsilon^{(t)}) \mathbf{F}_{v\bullet}^{(t-1)} + \sum_{u \in N_G(v)} \mathbf{F}_{u\bullet}^{(t-1)} \right)$$

* Graph Convolution Network (GCN)

$$\mathbf{F}_{v\bullet}^{(t)} := \mathsf{MLP}^{(t)} \left(\frac{1}{\sqrt{|N_G(v)| + 1}} \sum_{u \in N_G(v) \cup \{v\}} \frac{1}{\sqrt{|N_G(u)| + 1}} \mathbf{F}_{u\bullet}^{(t-1)} \right)$$

MPNNs: Expressive power

What is $\rho(MPNNs)$?

Recall: All pairs of graphs (G, H) such that all MPNNs return same graph embedding on both graphs.

Understanding ρ (MPNNs) translates in understanding power of GNN 101, GCNs, GINs,

A short detour to graph isomorphism testing

MPNNs and isomorphic graphs

- * Because of invariance: MPNNs embed isomorphic graphs in the same way. That is, if $G \cong H \Rightarrow (G, H) \in \rho(MPNN)$
- * Can MPNNs embed non-isomorphic graphs differently?

The graph isomorphism problem

Given two graph $G = (V_G, E_G, L_G)$ and $H = (V_H, E_H, L_H)$: are they isomorphic? Or is $G \cong H$?

- * Does there exist a graph isomorphism $\pi: V_G \to V_H$?
- * Theory: computational complexity is open.
- * Quasi-polynomial algoritm $n^{\log(n)^{\mathcal{O}(1)}}$ by László Babai (2016).
- * Practice: very fast tests.

One-sided test: Colour refinement

Apply heuristic on G and H: If Heuristic say "no" then $G \ncong H$, otherwise we do not know.

* Common heuristic is colour refinement

* In a paper by Boris Weisfeiler and Andrei

Leman (1968)

ноническому виду. В процессе такого приведения возникает новый инвариант графа-

algebra 21 (I). Study of the properties of the algebra 21 (I) proves helpful in solving a number of graph-theoretic problems. Some propositions concerning the relationships between the properties of the algebra $\mathfrak A$ (Γ) and the graph's automorphism group Aut (Γ) are discussed. An example of non-oriented graph Γ is constructed whose algebra 21 (1) coincides with the group algebra of a non-commutative group.

видом графа мы будем называть его матрицу смежности при

I. Рассмотрим произвольный конечный граф Г и его Для дальнейшего разбиения вершин на классы рассмотрим матрицу смежности $A(\Gamma) = \{a_{ij}\}$; здесь a_{ij} —число ребер, ведущих из i-й вершины графа b j-ую; i, j=1, 2, ..., n. В случае неориентированного графа полагаем $a_{ij} = a_{ji}$. Каноническим причем все переменные $x_1, x_2, ..., x_1, x_2, ...$ независимы. Элемент и и является многочленом второй стейени от x_1, x_2, \dots

- * Initial: All vertices have their original colour (label)
- * <u>Iteration</u>: Separation of identically coloured vertices based on colour histograms of neighbours.
- * Two graphs are non-isomorphic if they have different colour histograms.

- * Initial: All vertices have their original colour (label)
- * <u>Iteration</u>: Separation of identically coloured vertices based on colour histograms of neighbours.
- * Two graphs are non-isomorphic if they have different colour histograms.

Stops when colour partition does not change (max n iterations)

- * Initial: All vertices have their original colour (label)
- * <u>Iteration</u>: Separation of identically coloured vertices based on colour histograms of neighbours.
- * Two graphs are non-isomorphic if they have different colour histograms.

Stops when colour partition does not change (max *n* iterations)

- * Extensively studied in the theoretical computer science community
- * Many different characterisations of when two graphs have the same colour histograms (equivalent for colour refinement).
- * Successful on random graphs with high probability
- Weak expressive (distinguishing) power

L. Babai and L. Kucera. Canonical labelling of graphs in linear average time (1979)

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)

Arvind et al.: On the power of color refinement (2015)

M. Grohe: Descriptive Complexity, Canonisation, and Definable Graph Structure Theory (2017)

Arvind et al.: On WL invariance: Subgraph Counts and related properties (2019)

M. Grohe. The logic of graph neural networks (2021)

ρ (colour refinement)

- Cannot count cycles (triangles)
- Cannot distinguish d-regular graphs
- Only tree information

Back to MPNNs

MPNNs & Colour refinement

Theorem (Morris et al. 2019, Xu et al. 2019)

If colour refinement cannot tell two graphs apart then neither can any MPNN!

MPNNs

 $\xi^{(0)}(G, v) := \text{Hot-one encoding of label of vertex } v$

$$\begin{split} \xi^{(t)}(G,v) := \mathsf{Upd}^{(t)} \Big(\xi^{(t-1)}(G,v), \mathsf{Agg}^{(t)} \Big(\{ \{ \xi^{(t-1)}(G,v), \xi^{(t-1)}(G,u) \mid u \in N_G(v) \} \} \Big) \Big) \\ \rho(G) := \mathsf{Readout} \Big(\left\{ \left\{ \xi^{(L)}(G,v) \mid v \in V_G \} \right\} \Big) \end{split}$$

Color refinement

 $\operatorname{cr}^{(0)}(G, v) := \text{Initial label of } v$

$$\operatorname{cr}^{(t)}(G,v) := \operatorname{Hash} \Big(\operatorname{cr}^{(t-1)}(G,v), \{ \{ \operatorname{cr}^{(t-1)}(G,u) \mid u \in N_G(v) \} \} \Big)$$

$$\rho(G) := \big\{ \big\{ \operatorname{cr}(G,v) \mid v \in V_G \} \big\}$$

No MPNN can separate these graphs

MPNNs & Colour refinement

Recall:

We have just shown: ρ (colour refinement) $\subseteq \rho$ (MPNNs)

Expressive power of MPNNs is upper bounded by colour refinement

Lower bound?

- * We have seen that MPNNs cannot separate more graphs than colour refinement.
- * Can colour refinement separate more graphs than MPNNs? No!

Theorem (Morris et al. 2019)

There exists a GNN 101 which can embed *G* and *H* differently when colour refinement assigns them different colours

The class of MPNNs is as powerful (or weak) as colour refinement

What else can we say?

 ρ (colour refinement) = ρ (MPNNs)

Other - more insightful - characterisations?

A detour to homomorphism counts

Homomorphisms

- * Let $P = (V_P, E_P, L_P)$ and $G = (V_G, E_G, L_G)$ be graphs.
- * A function $h: V_P \to V_G$ is a homomorphism if it is edge preserving $(v, w) \in E_p \Rightarrow (h(v), h(w)) \in E_G$ and label preserving.

Homomorphism counts

- * Define $HOM(P, G) := \{ \text{ all homomorphisms from } P \text{ to } G \}$
- * Define hom(P, G) := |HOM(P, G)|.

Homomorphisms

- * Weaker notion than subgraph isomorphism (see later).
- * Underlies semantics of many graph query languages.
- * Algebra of homomorphism counts: A rich and active area of research.

MPNNs and hom counts

Theorem (Dell et al. 2019, Dvorák 2010) hom(T, G) = hom(T, H) for all trees T $if \ and \ only \ if$ $colour \ refinement \ cannot \ distinguish \ G \ from \ H.$

Corollary

hom(T, G) = hom(T, H) for all trees T if and only if no MPNN can distinguish G from H.

Follows from $\rho(cr) = \rho(MPNN)$

* MPNNs can only detect tree information from a graph!

Beyond distinguishing power?

- Approximation properties (universality)
- * Logical expressiveness
- Generalization

Approximation properties

- * Equip set of graphs $\mathcal G$ with a topology and assume that $\mathcal H$ consists of continuous graph embeddings from $\mathcal G$ to $\mathbb R$.
- * Let & ⊆ & be a compact set of graphs.

Stone-Weierstrass

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

If \mathscr{H} is closed under linear combinations and products, then \mathscr{H} can approximate any continuous function $\Xi:\mathscr{C}\to\mathbb{R}$ satisfying $\rho(\mathscr{H})\subseteq\rho(\{\Xi\})$.

* Can be generalised to general embeddings with output space \mathbb{R}^d

MPNNs: Approximation

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

On compact set of graphs, MPNNs can approximate any continuous graph embedding $\Xi:\mathscr{C}\to\mathbb{R}$ satisfying $\rho(\text{colour refinement})\subseteq\rho(\{\Theta\})$

- * We know $\rho(MPNNs) = \rho(colour refinement)$
- * Update functions can be used to approximate product and take linear combinations of MPNNs
- * Intricate relation between distinguishing power and approximation properties

Universality and graph isomorphism

Theorem (Chen et al. (2019)

In order for a class of methods to be able to approximate any (invariant) continuous functions, the class of methods should be able to distinguish any two non-isomorphic graphs.

Proof

Minimal size $\rho(\mathcal{H}) \subseteq \rho(\{\Xi\})$ $(G, H) \in \rho(\mathcal{H}) \Leftrightarrow G \cong H$

Logical expressiveness

- * Finite variable logics.
- * Extension with Presburger quantifiers.

Colour refinement (again)

I mentioned that ρ (colour refinement) has many characterisations.

Of interest is also a logical one, in particular First-order logic with 2 variables and counting quantifiers (C_2) .

$$\varphi(x) = \exists^{\leq 5} y \left(E(x, y) \land \exists^{\geq 2} x \left(E(y, x) \land L_a(x) \right) \right)$$

binary edge predicate unary label predicate

Given graph G, vertex $v \in V_G$ satisfies φ : It has at most 5 neighbours each with at least to neighbours labeled "a"

Colour refinement and C2

Theorem (Cai et al. 1992)

Two graph shave the same colour histogram after t iterations of colour refinement *if and only if* they satisfy the same C_2 sentences of quantifier depth t

$$\rho$$
(colour refinement) = ρ (MPNNs) = ρ (\mathbb{C}_2)

What about vertices?

Which unary C_2 formulas can MPNNs express?

* Not all: $\varphi(x) := L_b(x) \land \exists y L_r(y)$

I am blue and there exist a red vertex somewhere...

 \mathcal{H} can \mathcal{C} -express Ξ if there exists a $\xi \in \mathcal{H}$ such that for all $G \in \mathcal{C}$, $\mathbf{v} \in V_G^p : \xi(G, \mathbf{v}) = \Xi(G, \mathbf{v})$

Cannot be reached by message passing!

Which unary C_2 formulas can MPNNs express?

- * Not all: $\varphi(x) := L_b(x) \land \exists y L_r(y)$
- * Graded modal logic: syntactical fragment of C_2 in which quantifiers are of the form $\exists^{\geq N} (E(x,y) \land \varphi'(y))$

Theorem (Barceló et al. 2020)

Let $\varphi(x)$ be a unary FO formula. Then, $\varphi(x)$ is equivalent to a graded modal logic formula *if and only if* $\varphi(x)$ is expressible by the class of MPNNs.

 $\exists \xi \in \text{MPNNs} : \forall G \in \mathcal{G}, \forall v \in V_G : (G, v) \models \varphi \Leftrightarrow \xi(G, v) = 1$

Role of activation functions

Theorem Let $\varphi(x)$ be a unary FO formula. Then, $\varphi(x)$ is equivalent to a graded modal logic formula *if and only if* $\varphi(x)$ is expressible by the class of MPNNs.

* Proof relies on sign, ReLU, trReLU activation function.

Theorem (Sammy Khalife 2023)

There is a $\varphi(x)$ in graded modal logic that is not expressible by MPNNs using *polynomial activation functions*.

MPNN+: Extended MPNNs

* Can we extend MPNNs such that all C_2 formulas (including $\varphi(x) := L_b(x) \land \exists y L_r(y)$) can be expressed?

$$\xi^{(t)}(G,v) := \mathsf{Upd}^{(t)}\Big(\xi^{(t-1)}(G,v),\mathsf{Agg}^{(t)}\big(\{\{\xi^{(t-1)}(G,v),\xi^{(t-1)}(G,u)\mid u\in N_G(v)\}\}\big)\Big)$$

Add global aggregation in every layer

$$\xi^{(t)}(G,v) := \mathsf{Upd}^{(t)}\Big(\xi^{(t-1)}(G,v),\mathsf{Agg}^{(t)}\big(\{\{\xi^{(t-1)}(G,v),\xi^{(t-1)}(G,u)\mid u\in N_G(v)\}\}\big),$$

Global^(t)
$$(\{\xi^{(t-1)}(G,u) \mid u \in V_G\}\})$$

MPNNs+

Theorem (Barceló et al. 2020)

Every unary C_2 formula $\varphi(x)$ is expressible by the class of MPNNs+

* The corresponding colour refinement version is known as the one-dimensional Weisfeiler-Leman algorithm or 1-WL on vertices.

$$\rho(1\text{-WL}) = \rho(\text{MPNNs+})$$

Wait a moment! MPNNs go easily beyond FO!

$$\operatorname{trRelU}\left(\sum_{u \in N_G(v)} P_r(u) - \sum_{u \in N_G(v)} P_b(u)\right) = \begin{cases} 1 & v \text{ had more red than blue neighbors} \\ 0 & \text{otherwise} \end{cases}$$

This property is known not to be expressible as an FO formula $\varphi(x)$

Proof

By means of locality of FO

or

By playing so-called Erhenfeucht-Fraisse game.

Solution? Add more complex quantifiers!

$$\varphi(x) = \exists^{\geq 2} y \left(E(x, y) \land L_r(y) \right) \longrightarrow \varphi(x) = (\#_y [E(x, y) \land L_r(y)] \geq 2)$$

$$\varphi(x) = (\#_{y}[E(x, y) \land L_{r}(y)] \ge 2)$$

true when x has more than two red neighbours

$$\varphi(x) = (\#_y[E(x,y) \land L_r(y)] - \#_y[E(x,y) \land L_b(y)] \ge 0)$$

true when x has more red than blue neighbours

$$\varphi(x) = \left(\sum_{i=1}^k a_i \#_y [E(x, y) \land \psi_i(y)] \le \delta\right)$$

true when the neighbours of x satisfy the linear inequality

Presburger quantifier

Local and Global

$$\varphi(x) = (\#_y[E(x, y) \land L_r(y)] \ge 2)$$

true when x has more than two red neighbours

$$\varphi(x) = (\#_y[L_r(y)] - \#_y[E(x,y) \land L_r(y)] = 0)$$
global counting local counting

true when x has all red nodes in graph as neighbours

- * Extending Two-variable FO with Presburger quantifiers:
- * New logics: MP (global) and L-MP (local)

Uniform characterisation of sum-GNNs

Theorem (Benedikt et al. 2024)

- * The language L-MP is equivalent to sum-GNNs using eventually constant activation functions
- * Allowing global aggregation in sum-GNNs, equivalence to MP.

a vertex has more red than blue neighbours

$$\operatorname{trRelU}\left(\sum_{u \in N_G(v)} P_r(u) - \sum_{u \in N_G(v)} P_b(u)\right)$$

L-MP expressible

sum-GNN expressible

$$\varphi(x) = (\#_y[E(x,y) \land L_r(y)] - \#_y[E(x,y) \land L_b(y)] \ge 0)$$

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural networks via logical characterizations (2024)

Uniform characterisation of sum-GNNs

Theorem (Benedikt et al. 2024)

- * The language L-MP is equivalent to sum-GNNs using eventually constant activation functions
- * Allowing global aggregation in sum-GNNs, equivalence to MP.

- * What about ReLU?? This activation is not eventually constant. Theorem fails.
- * What about max, avg as aggregation functions?

Generalisation and expressivity

* We want the generalisation error $L_{\mathcal{D}}(\xi) - L_{\mathcal{T}}(\xi)$ to be small.

$$L_{\mathcal{D}}(\xi) - L_{\mathcal{T}}(\xi)$$
 to be small.

Theorem (Vapnik and Chervonenkis 1964)

* For $\delta > 0$, with probability $1 - \delta$ (in our selection of training data \mathcal{T} of size m) for all $\xi \in \mathcal{H}$:

$$L_{\mathcal{D}}(\xi) - L_{\mathcal{T}}(\xi) \le \sqrt{\frac{2d\log(\frac{em}{d})}{m}} + \sqrt{\frac{\log(\frac{1}{\delta})}{2m}}$$

* where d is the VC dimension of \mathcal{H}

VC dimension

* A set of graphs $G_1, ..., G_d$ is shattered by an embedding class \mathcal{H}

if, for any labeling $y_1, ..., y_d \in \{0,1\}^d$

we can find an embedding $\xi \in \mathcal{H}$ (which may depend on the labeling)

such that
$$\xi(G_1) = y_1, ..., \xi(G_d) = y_d$$

* VC dimension= maximal number of graphs that can be shattered.

VC dimension

* VC dimension= maximal number of graphs that can be shattered.

Let us assume we consider graphs up to size n: \mathcal{G}_n

Theorem

The VC dimension of MPNNs on \mathcal{G}_n is bounded by the number of graphs in \mathcal{G}_n that can be distinguished by MPNNs.

We can also show matching lower bound.

Corollary

The VC dimension of MPNNs on all graphs is unbounded.

Colour complexity

If color refinement does not need many colours for a graph: low colour complexity

We can get smaller bounds on number of distinguished graphs.

on 2-regular graphs only one colour is needed.

MPNNs only distinguish based on size

Generalisation and expressivity

Only tip of iceberg

Continuity and covering numbers

Distance measures

Sraph neural tangent kernels

Understanding precise impact of expressiveness on generalization, not well understood yet

Questions?

More powerful methods

Boosting expressive power

More expressive MPNNs? Message passing Complexity 94

How to beyond MPNNs?

Theoretical research guides architecture design!

- * Feature augmentation
- * subgraph GNNs.
- * Higher-order MPNNs

Feature Augmentation

Boost the expressive power by adding information

Feature engineering

* Deep learning and MPNNs have replaced "old school" feature engineering approach.

* MPNNs were supposed to learn such features automatically ...

Idea #1: Adding expressive features

Recall:

Theorem

hom(T, G) = hom(T, H) for all *trees T* if and only if no MPNN can distinguish G from H.

* What if we add subgraph information before doing message-passing?

More than trees

Structural encodings

1. Choose collection of rooted graph patterns/motifs

$$\mathscr{P} := \{P_1^r, \dots, P_\ell^r\}$$

- 2. Choose how to match subgraphs in P with data graph G
- 3.Add count of matches to vertices as extended features.

Matches

- * Homomorphism: edge preserving
- * Subgraph isomorphism: bijection, edge preserving
- * Induced subgraph isomorphism: bijection, edge preserving (both ways)

 $hom(P^r, G^v)$

 $subiso(P^r, G^v)$

indsubiso (P^r, G^v)

Counts

99-MPNNs

* Add structural encoding as vertex features and run MPNN

$$\mathcal{P} := \{P_1^r, \dots, P_\ell^r\}$$

P-MPNNs

$$\begin{split} \xi^{(0)}(G,v) &:= \text{Hot-one encoding of label of vertex } v + \underbrace{\mathsf{hom}(P_1^r,G^v), \ldots, \mathsf{hom}(P_\ell^r,G^v)}_{\boldsymbol{\xi}^{(t)}(G,v) := \mathsf{Upd}^{(t)}\Big(\xi^{(t-1)}(G,v), \mathsf{Agg}^{(t)}\Big(\{\{\xi^{(t-1)}(G,v),\xi^{(t)}(G,v), \mathsf{hom}(P_1^r,G^u), \ldots, \mathsf{hom}(P_\ell^r,G^u) \mid u \in N_G(v)\}\}\Big)\Big)}_{\boldsymbol{\rho}(G) := \mathsf{Readout}\Big(\Big\{\big\{\xi^{(L)}(G,v) \mid v \in V_G\}\big\}\Big) \end{split}$$

hom counts of patterns

* Did we increase expressive power?

99-MPNNS

- * We have seen that these graphs equivalent for colour refinement but clearly not for 2-MPNNs.
- * So, increase in power!
- * What is their precise expressive power?

9-MPNNs: Expressive power

Theorem

hom(T,G) = hom(T,H) for all \mathcal{P} -pattern trees T if and only if no P-MPNN can distinguish G from H.

$$\mathcal{P} = \{ \}$$

Zinc dataset

SET (\mathcal{F})	MAE
None	0.47 ± 0.02
$\{C_3\}$	0.45 ± 0.01
$\{C_4\}$	0.34 ± 0.02
$\{C_6\}$	0.31 ± 0.01
$\{C_5, C_6\}$	0.28 ± 0.01
$\{C_3,\ldots,C_6\}$	0.23 ± 0.01
$\{C_3,\ldots,C_{10}\}$	10322 ± 0.01

Take tree: add in each tree vertex copies of rooted patterns

Barceló et al.: Graph neural networks with local graph parameters. (2021)

Idea #2: (Random) Vertex identifiers

- * Message-Passing is only based on vertex features and adjacency information.
- * Two different vertices with the same vertex features will be treated the same (if they have the same colour in colour refinement).

What if we add vertex identifiers?

Vertex identifiers

Self identification: useful for cycle detection

In terms of colour refinement: every vertex has a unique colour

rMPNNs

- * How to choose identifiers? Common choice is at random!
- * With high probability random features are vertex identifiers

Theorem

rMPNNs approximate any invariant graph/vertex embedding with high probability

* Invariance of computed embedding only in expectation!

Idea #3: Use global information

- Extract global graph information and use it as positional encodings of vertices
 - * Spectral information
 - Shortest paths (distance information)
 - * Biconnectivity (connectivity information)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021) Ying et al.: Do transformers really perform bad for graph representation (2021)

Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)

Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)]

Spectral graph theory

- * Eigenvalues/vector: $\mathbf{M} \cdot \mathbf{v} = \lambda \mathbf{v}$
- * For adjacency matrices: Eigenvalues and eigenvectors of Laplacian $L_G = D_G A_G$

- * Laplacian eigenvalues and vectors contain connectivity information
 - * multiplicity 1st eigenvalue ~ connected components.

110

Spectral MPNNs

Add eigenvectors as vertex features

Spectral invariant

$$\mathbf{A} = \sum_{\lambda} \lambda \mathbf{P}_{\lambda}$$

$$\mathbf{P}_{\lambda} = \begin{pmatrix} p_{11}^{\lambda} & p_{12}^{\lambda} & \dots & p_{1n}^{\lambda} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1}^{\lambda} & p_{n2}^{\lambda} & \dots & p_{nn}^{\lambda} \end{pmatrix}$$
 Multiset

Spectral invariant

$$v \mapsto \operatorname{specinv}(v) := (\lambda, p_{vv}^{\lambda}, \{\{p_{vu}^{\lambda} \mid u \in V_G\}\})_{\lambda \in \Lambda}$$

Graph properties

Number of length 3, 4, or 5 cycles, whether a graph is connected and the number of length k closed walks from any vertex to itself

Cvetković et al.: Eigenspaces of graphs (1997)

M. Fürer: On the power of combinatorial and spectral invariants (2010)

SpecMPNN

Spectral invariant

$$v\mapsto \operatorname{specinv}(v):=(\lambda,p_{vv}^{\lambda},\{\{p_{vu}^{\lambda}\mid u\in V_G\}\})_{\lambda\in\Lambda}$$

Variation used in Signet and BasisNet

2-WL bound

Can be using combination with any MPNN

Theorem (Seppelt and Rattan (2023) specMPNN bounded in power by (1,1)-WL and strictly lower than 2-WL

We discuss these WL's later

Subgraph GNNs

Turning one graph into many

General idea

* Colour refinement equivalent graphs may contain colour refinement inequivalent subgraphs.

* View graphs as a collection of subgraphs then run MPNN

Subgraph-Vertex Aggregation

Vertex+>Subgraph Aggregation

The subgraph GNN "wave"

Bevilacqua et al: Equivariant subgraph aggregation network (2022)

All provably more expressive than MPNNs*

Cotta et al.: Reconstruction for powerful graph representations (2021)

Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)

Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)

Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)

Qian et al.: Ordered subgraph aggregation networks. (2022) You et al.: Identity-aware graph neural networks. (2021)

Zhang and P. Li. Nested graph neural networks (2021)

Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

Selection policies

- DS-GNN vertex deletion
 - edge deletion
 - ego nets
 - marked ego-nets

ID-GNNs - marked ego-nets

GNNs-AK - ego-nets

k-OSAN - size k subgraph marking

Rec-GNN - k-vertex deletion

NGNN - ego-nets

Popular/effective: ego-nets

k-OSAN

Theorem (Qian et al. 2022)

- k-OSANs and k-OSANs^t encompass almost all subgraph methods with selection policy involving k vertices.
- Strictly bounded in expressive power by (k+1)-WL
- Incomparable to k-WL.

k=2

- * if 2-WL cannot distinguish graphs, then neither can 1-OSANs
- * 2-WL can distinguish more graphs than 1-OSANs
- * There exists graphs than can be distinguished by 1-OSANs but not by MPNNs, and vice versa, there exists graphs that can be distinguished by MPNNs but not by 1-OSANs

121

Subgraph GNNs

- * Can always ensure to be strictly more expressive than MPNNs by including original graph in batch.
- * Tractability only when easy subgraph policies are used, i.e., leading to a small number (linear) of subgraphs.
- * Seems a good balance between complexity and expressiveness

K-dimensional Weisfeiler-Leman

Boosting expressive power by higher-order message-passing

More powerful heuristic

Apply heuristic on G and H: If Heuristic say "no" then $G \ncong H$, otherwise we do not know.

Idea: higher-order GNNs

Theorem (Dell et al. 2018, ...)

hom(T, G) = hom(T, H) for all graphs T of tree width k if and only if k-WL cannot tell apart G from H

k-MPNNs will detect more graph information than MPNNs

Z. Dvorák: On recognizing graphs by numbers of homomorphisms (2010) Dell et al. Lovász meets Weisfeiler and Leman (2018)

k-Folklore GNNs (k-FGNs)

$$\xi^{(t)}(G, v_1, ..., v_k) := \mathsf{MLP}_1^{(t)} \Big(\sum_{u \in V_G} \prod_{i=1}^k \mathsf{MLP}_2^{(t)} (\xi^{(t-1)}(G, v_1, ..., v_{i-1}, u, v_{i+1}, ..., v_k)) \Big)$$
 k-vertex embedding Global aggregation Uses multiplication

Expressive power?

Theorem (Maron et al. 2019), Azizian and Lelarge 2021)

$$\rho(k - \text{FGNN}) = \rho(k - \text{WL})$$

Maron et al.: Provably powerful graph networks (2019)

127

W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant graph neural networks (2021)

k-GNNs

A simpler architecture:

$$\xi^{(t)}(G, v_1, \dots, v_k) := \sigma \left(\xi^{(t-1)}(G, v_1, \dots, v_k) \mathbf{W}_1^{(t)} + \left(\sum_{i=1}^k \sum_{u \in V_G} \xi^{(t)}(G, v_1, \dots, v_{i-1}, u, v_{i+1}, \dots, v_k) \right) \mathbf{W}_2^{(t)} \right)$$

Global aggregation

Expressive power?

Theorem (Morris et al. 2019)

$$\rho(k - \text{GNN}) = \rho(k - \text{WL})$$

Questions?

Conclusions

And look ahead

What to use?

Subgraph

- * Small graphs
- Goodcompromise in general

Feature Augmentation

- Large training datasets
- Invariance not important
- * Preprocessing ok

Higher-order

- * Graphs are small
- Efficiency not essential
- Expressivityguarantee needed

Road ahead

Expressiveness

- A lot of recent progress
- WL hierarchy needs
 better reconciliation
 with practice
- Hom count characterisations
- * Relational

Connection with Learning??

Optimisation and training unexplored

- Generalisationproperties
- * Sample efficiency?

Conclusion

- * Study of expressive is beautiful area of research for ML researchers
- * Combines theory and practice in an elegant way
- * Many unresolved questions ...