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Introduction

« Network representations capture interactions and dependencies
among variables or observations,

— These can be extended to consider multiple networks, offering
flexible and powerful modeling of complex phenomena.

« Graph embedding techniques map nodes, subgraphs, or entire
(multiple) graphs into a vector space while preserving structural
properties.

« Arich set of methods, including graph kernels, matrix
factorization, and deep learning architectures, supports tasks
such as feature extraction, graph clustering, and classification.

Mario Guarracino 3



doi:10.1111/evo.12541

Cold adaptation shapes the robustness EVOLUTION

of metabO“C networks in Drosophila International Journal of Organic Evolution

melanogaster S T

Caroline M. Williams,'2 Miki Watanabe,? Mario R. Guarracino,* Maria B. Ferraro,’ Arthur S. Edison,®

Theodore J. Morgan,” Arezue F. B. Boroujerdi,® and Daniel A. Hahn® Hardy Susceptible CM Williams

A B Lys |
Higher in Higher in P &
hardy susceptible 2 - Susceptible &) Asn

Kynn |

Sz
I
P
2

1 Suc A AT ( Tyr ( ace Gin Asp Ala = Lac

\ RS I 1

[ The & Prop |
:[ \ P, sucr) | Asn ) Metsuli= Lys
4 1 ~ (Fom) N /
:[___,_,—-——'- ]/Lac\—/ Gly - \ ~ ,?e’,/" . I 1 Fruc == Pro
) ( wat \ PChol| Dimetn
: ) \ / o e < \
Before During After Glue )~/ Fruc (lotsu} C \ .
N_ \__/ N - e )
Dimet) (g

B | p ¢

=
*
Scores on PC1

Before

Loadings

/ Tyr Ace = Prop

(AmP I ' N\

\ Dimeth—{ Gin
Met.sulf

2 ()~ .
\ M —~(suer I ser | Fruc )

~
02 (NAD I
1 WM A~ /
( nsp Asn

]

I
w
&
@
o
@

°
B
@

Prop m= Sucr

Scores on PC2
&
| 1 |
—.—'!
g
&
F——

After

PChol
Dimeth *

-2 01 2 3 4
Fold change
(susceptible/hardy)

Loadings




Example: Node Classification

Adapted from Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www
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-xample: Link Prediction

Mario Guarracino



Nodes show members of the

‘Mistretta’ and "Batanesi’ families.

Circled nodes mark investigated
association leaders.

« The red and yellow circles indicates

bosses of other districts.
White nodes are other relevant
associates.
Edge width reflects meeting
frequency, and node size reflects
degree.

-xample: mafia meetings
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Calderoni et al, Robust link prediction in criminal networks: A case study of the Sicilian Mafia, Expert Syst. App., 2020.



SL Lifecycle

 (Supervised) Statistical Learning Lifecycle: This feature, that
feature. Every single time!

Raw Structured Learning Model
Data Data Algorithm

F Automatically Downstream
Enxieng learn the features prediction task

Mario Guarracino 10




Feature learning on graphs

Goal: Efficient task-independent feature learning in networks!
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Why is it hard?

« Modern deep learning toolboxes are designed for

simple sequences or grids.
— CNNs for fixed-size images/grids...

Duxaxs Pz
N -
, /
f y 2vme
. D)) s

— RNNs or wordavec for text/sequences..
® ® ®
t

1
MW oo oo |+ il ~ |
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Networks are complex!

« Complex topographical structure (i.e., no spatial locality like grids).

'@ o- ®
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O @t D

O
O

* No fixed node ordering or reference point (i.e., the isomorphism
problem)

« Often dynamic and with multimodal features.

Mario Guarracino



Traditional approaches

 [raditional graph-based methods follow the pre-deep

learning paradigm:

— Compute hand-crafted features or statistics first, often guided
by heuristics or domain expertise;

— Then feed those features into a standard learning algorithm
such as logistic regression.

Mario Guarracino 14



Graph statistics

- Node degree d, simply counts the number of edges incident to a node

uev:
duzzA[u,v]

veV
« Node eigenvector centrality: e, is recursively defined by a relation in
which a node's score is proportional to the sum of its neighbors'
centralities:

ey = 1//12 Alu,v]e, Vu € V,
vevV
« where 4 is a constant.

Mario Guarracino 15



Graph statistics

+ Clustering coefficient:
_ |(v1,v2) € E1vy, v, € N (U)]

dy
(%)
— Number of edges between neighbors of nodeu inN(u) = {fve V: (u,v) €

£} divided by the total pairs of nodes in u's neighborhood.

* The clustering coefficient counts the number of closed triangles within
each node's local neighborhood.

« We can consider more complex structures, such as cycles of fixed
length, and characterize nodes by counts in their ego graph.

Cu

Mario Guarracino



Node embeddings

* These methods encode nodes as low-dimensional vectors,
summarizing the structure of their local graph neighborhood.

* In other words, they project nodes into a latent space, where
geometric relations correspond to relationships (e.g., edges) in the
original graph.

+ Node embeddings can be explained in the framework of
encoding and decoding graphs.

y, \\ =

| L S

/ \ encode nodes
Graphics from WL Hamilton Graph Representation, 2020. original network embedding space 1



—ncoding and decoding graphs

* First, an encoder model maps each node in the graph into a low-
dimensional vector or embedding.

* Next, a decoder model takes the low-dimensional node
embeddings and uses them to reconstruct information about
each node's neighborhood in the original graph.

[ |
encode node B decode neiﬂhborhood ' %
||

(embgé‘ding)

18



The encoder

« The encoder maps nodes v € V to vector embedding z, € RY,
where z,, corresponds to the embedding for node v € V.

 |In the simplest case, the encoder has the following form:
ENC: V - R¢
« The encoder often relies on what we call the shallow
embedding approach, where this encoder is simply an
embedding lookup based on the node ID:
ENC(v) = Z[v]
. where Z € RVIX4 js 3 matrix containing the embedding vectors

for all nodes and Z[v] denotes the row of Z corresponding to
node v.

Mario Guarracino
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The decoder

« The role of the decoder is to reconstruct some graph
characteristics from the node embeddings that are generated
by the encoder.

— For example, given a node u embedding z,,, the decoder might
attempt to predict the neighborhood NV (u) of u.

 |tis standard to define pairwise decoders, which have the
following signature:
DEC : RXR% — R*.
« Pairwise decoders can be interpreted as predicting the
relationship or similarity between pairs of hodes.

Mario Guarracino

20



The decoder

« Applying the pairwise decoder to a pair of embeddings (z,, z,)
results in reconstructing the relationship between u and v.
« The goal is optimizing the encoder and decoder to minimize
the reconstruction loss, so that:
DEC(ENC(w); ENC(v)) = DEC(zy, Z,) = S[u; v]
« Here, we assume that S[u; v] is a graph-based similarity
measure between nodes.

« For example, a simple reconstruction objective of predicting
whether two nodes are neighbors would correspond to

S[u; v] 2 Alu, v].

Mario Guarracino 21



Optimizing an Encoder-Decoder

The standard practice is to minimize an empirical reconstruction
loss L over a set of training node pairs D:

L= Z {(DEC(zy, Zy), S[u; v]),
(u,v)ED
« where £: RXR — Ris a loss function measuring the discrepancy
between the estimated DEC(z,, z,,) and the true values S[u; v].
» Depending on the definition of DEC and S, the loss function ¢ can
be a mean-squared error or even a classification loss.

« Most approaches minimize the loss using stochastic gradient
descent, but matrix factorization can be also used.

Mario Guarracino 22



-ncoder-

Decoder Approaches

Method Decoder Similarity measure Loss function
Lap. Eigenmaps ||z, — z.||3 general DEC(Zy, Zy) - S|u, v]
Graph Fact. Z, 7, Alu, v] IDEC(24,2y) — S[u, v]|3
GraRep zIzv Alu,v], ..., Ak[u, v|  ||DEC(2Zy,2Zy) — S[u, v] ||%
HOPE szv general |DEC(2Zy, Zy) — Slu, V] ||%
DeepWalk e7u 7 — pg (v|u) —Slu, v] log(DEC(Zy, Zy))
Dpey €7uk

node2vec eru pg(v|u) (biased) —S[u, v]log(DEC(Zy, 2y))

> key €7u w2k

Mario Guarracino
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Limits

« Shallow embedding methods do not share any parameters
between nodes in the encoder, since the encoder directly
optimizes a unique embedding vector for each node.

« This lack of parameter sharing is both statistically and
computationally inefficient.
— From a statistical perspective, parameter sharing can improve the
efficiency of learning and also act as a powerful form of regularization.
— From the computational perspective, the number of parameters
necessarily grows as 0(|V]), which can be intractable in massive
graphs.
- Shallow embedding approaches not leverage node features in
the encoder. '>

Mario Guarracino



Graph Neural Networks

« Graph neural network (GNN) formalism is a general
framework for defining deep neural networks on
graph data.

* The key idea is to generate representations of nodes
that actually depend on the structure of the graph,
as well as any feature information we might have.



Neural Message Passing

» The defining feature of a GNN is that it uses a form of neural
message passing in which vector messages are exchanged
between nodes and updated using neural networks [Gilmer et al,,
20171.

« We will now focus on the message passing framework itself and
describe how we can take an input graph G = (V, £), along with a
set of node features X € R!Vl, and use this information to generate
node embeddings z,,,u € V.

Mario Guarracino 26



Overview of the Message Passing

» During each message-passing iteration in a GNN, a /dden

embedding h,(f) corresponding to each node u € V is updated
according to information aggregated from u's graph
neighborhood NV (u)

o ,‘3'51 ............... @
l ------ . ............. .
................... Q
A A ........ .
® — AGGREGATE D— '«._;; ...............
............... .
................. H

INPUT GRAPH

27



Overview of the Message Passing

« This message-passing update can be expressed as follows:
h**Y = ypDATE® (hﬂ‘) ; AGGREGATE(™ ({n(?, v v € N(u)}))

— (k) (k)
= UPDATE® (h{”, m{?,,)
« where UPDATE and AGGREGATE are arbitrary differentiable
functions and mg\’;zu) s the "message” that is aggregated from u's

graph neighborhood NV (u).

S. Scardapane Alice's Adventures in a Differentiable Wonderland (2024)

Mario Guarracino 28


https://arxiv.org/abs/2404.17625

Node features

« Unlike the shallow embedding methods, the GNN require node
features x,, Vu € V as input to the model.

* In many applications, we will have rich node features, such as
gene expression in biological networks or text features in social
networks.

« When no node features are available, we can use node statistics,
such as node degree or centrality, to define features.

« Another popular approach is to use identity features, where we
associate each node with a one-hot indicator feature, which
uniquely identifies that node.

Mario Guarracino 29



Intulition

 In addition to structural information, the other key information
captured by GNN node embedding Is fealure-based.

« After k iterations, the embedding can encode information about
the degrees of all the nodes in u's k-hop neighborhood.

« This local behavior of GNN is similar to that of the convolutional
kernels in convolutional neural networks (CNN).

— While CNNs aggregate features from spatially-defined patches in an
image, GNNs aggregate information based on local graph

neighborhoods.

Mario Guarracino
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Graph Attention Network (GAT)

« A popular strategy for improving the aggregation layer in GNN is
to apply attention [Bahdanau et al., 2015].

« The basic idea is to assign an attention weight to each neighbor,
to weight this neighbor's influence during the aggregation step.

« A GNN model applying attention is Graph Attention Network
(GAT) [Velickovic et al.,, 2018], which uses attention weights to
define a weighted sum of the neighbors:

My ) = au,vhv
VEN (u)

Mario Guarracino 34



Neighborhood attention

* Any standard attention model from the deep learning literature at
large can be used.

» Popular variants of attention include the bilinear attention model

exp (h, Wh,)
Z’U’ GN(U) exp (hIWhU') 7

« as well as variations of attention layers using MLPs

Oéu’v —

exp (MLP(h,,h,))
Z’UIGN(U,) eXp (MLP(hu, h’l)/)) )

au,v —

Mario Guarracino
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GAT with multiple heads

* |In addition, while it is less common in the GNN literature, it is also
possible to add multiple attention "heads’, in the style of the
popular transformer architecture [Vaswani et al., 2017].

* Inthis approach, one computes K distinct attention weights ay, , .

using independently parameterized attention layers.

« The messages aggregated using the different attention weights
are then transformed and combined in the aggregation step,
usually with a linear projection followed by a concatenation
operation, e.g.

myr,) = a1 Gax ® ... D ag]

Mario Guarracino
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Concatenation and Skip-Connections

« One issue with GNN is over-smoothing: after several iterations of
GNN message passing, the representations for all the nodes can
become similar to each another.

« Over-smoothing is expected when the information aggregated
from the node neighbors during message passing begins to
dominate the updated node representations.

NG )

will strongly depend on the incoming m;. ., Message
aggregated from the neighbors at the expense of the node
representations hl(lk) from the previous layers.

37



GraphSAG

* A natural way to alleviate this issue is to directly preserve
information from previous rounds of message passing during the
update step using skip connections.

* The connection was proposed in the GraphSAGE and employs a
concatenation to preserve node-level information during
message passing:

UPDATEconcat (hu7 m./\/(u)) — [UPDATEbase (hu7 m./\/(u)) D hu]v

« where we simply concatenate the output of the base update
function with the node's previous-layer representation.

38



Heterophily

« Many popular GNNSs fail to generalize to networks where
connected nodes may have different class labels and dissimilar

features.
* It can happen that a GNN is outperformed by models that ignore
the graph structure!
« Possible solutions [Zhu 2020]:
— Ego and neighbor-embedding separation,
— Higher-order neighborhoods,
— Combination of intermediate representations.

— Attention-line mechanisms
* More on this tomorrow - session 9, at 15,15.

Mario Guarracino
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Explainability vs interpretability

« Most explainability approaches for GNNs are local and post-hoc
— GNNExplainer, PGExplainer, SubgraphX, offering limited global
insights.
* Interpretability focuses on models that can provide information on
which nodes are influencing the class predictions [Bechler-
Speicher, 2024l

Mario Guarracino 40



Graph Transformers

e Can we do better?

— Over-smoothing and over-squashing, structural and positional
encodings, explainability and interpretability.

Graph Transformer

Encodings [Sec. [2.2] Input Features [Sec.[2.3] Tokens [Sec.[2.4] Propagation [Sec.[2.5]
3 L ¥ : §—‘—i ¥ lV il i
Node-level Features Edge-level — Graph-level Non-geometric Geometric Nodes Nodes + Edges Subgraphs Fully Fully \
—_— connected connected
Positional Structural l w/ standard  w/ modified Sparse Hybrid
attention attention
GT. |
GT SAN Graphormer \
SAN SE(3)-Transformer GraphiT CraphiT
GraphiT TorchMD-Net GmghTreLnS SXI\' GraphTrans
SAT Equiformer AT GMT SAT GPS
Local Local  Shortest path TokenGT Graphormer GPS Coarformer EGT GPS++
Global Global 3D distances  Ego-graph GPS Transformer-M  SE(3)-Transformer ~ EGT MLP-Mixer GT Transformer-M ~ GKAT Specformer
Relative  Relative Random walks Subgl aph MLP-Mixer GPS++ quiformer TokenGT  NAGphormer TokenGT GRIT Exphormer GOAT

L. Muller et al. Attending to Graph Transformers, Trans. on Machine Learning Research (2024)
41



Whole-graph embedding

Given a set of graphs G = {G4, ..., G,,,} With the same set of
vertices V, a whole-graph embedding of dimension d is an
encoding ENC

o/o
ENC:G,€G —y, €eRE i€ ..., |G b l I
such that ENC preserves some proximity °<|>
measure defined on G graph embedding
458 L
ﬁ ﬁ@ Whole graph > Applications
edding, o - Graphs classification
QBK: Tt - Graphs clustering
| oo - Visualization

Mario Guarracino 42



Functional brain networks

MRI Acquisition
. Seg_mointation Tiw igh.res. Diffl:Jsion Spectrgm Imaging
« One network for each patient e AR

o All networks the same nodes

* Nodes represent neural regions
Of i n te rest Partition into 66 anatomical snﬁregions

I u_.wgl" zzzzz &
e %

A | Post

S Cuneus . cent

- eral f
(ingud N
i
n
|

Whole brain structural
connection network

pr

Partition into 1000 Rgs
N

»
rl\'\‘“ -

Hagmann et al., Mapping the Structural Core of Human Cerebral Cortex, PLOS Biology, 2008

Mario Guarracino 43



Approaches to WG

[ Matrix Factorization

1 Laplacian Eigenmaps

([ Adjacency Spectral Embedding
d Joint Embedding

..

Y

Graph Kernels

1 Weisfeiler-Lehman (WL)
(d Shortest Path (SP)

(d Random Walk (RW)

1 DeepWL

..

\_

Mario Guarracino

Neural Network-based \
1 Patchy-San
1 Graphavec
d sub2vec
1 Anonymous walk embeddings
1 Autoencoders
1 GraphSAGE
1 DGCNN
d U2GNN
..

. /
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Graph2vec

Inspired by the neural document embedding model docavec.

document D

(Skipgram)

« Given a labeled graph G, sample ¢ rooted subgraphs™ orf
degree dfrom Gto learn a representation of G

« Graph2avec = feed-forward NN to learn distributed
representations of graphs

" subgraph including all nodes reachable in dhops from the node

Narayanan et al., graph2avec: Learning Distributed Representations of Graphs, ArXiv, 2017
Le and Mikolov, Distributed Representations of Sentences and Documents, Proc. ICML, 2014 45



Graph2vec

Inspired by the neural document embedding model docavec.

doc2vec
(Skipgram)

document D

(Skipgram)

Word c-1

« Agraphisviewed asadocument

« The subgraphs of degree d rooted ineach node are the words
composing the document

— Subgraph extraction and relabeling follow the WL refinement

Narayanan et al., graph2avec: Learning Distributed Representations of Graphs, ArXiv, 2017
Le and Mikolov, Distributed Representations of Sentences and Documents, Proc. ICML, 2014 46



Graph2vec

Algorithm 1: GRAPH2VEC (G, D, d,¢, )

© 0 N0 bk W R

10

11

input : G = {G1,Ga,...,Gp}: Set of graphs such that each
graph G; = (N;, E;, \;) for which embeddings have to
be learnt
D: Maximum degree of rooted subgraphs to be
considered for learning embeddings. This will produce
a vocabulary of subgraphs, SGyocab = {591, 592, ...}
from all the graphs in G
4: number of dimensions (embedding size)
¢: number of epochs
a: Learning rate

output: Matrix of vector representations of graphs ® € RIGIxS

begin
Initialization: Sample ® from RICI*9
for e=1 to e do
® = SHUFFLE (G)
for each G; € & do
for each n € N; do
for d =0 to D do
g\ := GETWLSUBGRAPH(n, G;, d)
J(®) = —log Pr (s¢%” |2(Q))
>=%—-adl

return ¢

Algorithm 2: GETWLSUBGRAPH (n, G, d)

=

S

N o

input : n: Node which acts as the root of the subgraph

G = (N, E, )\): Graph from which subgraph has to be
extracted
d: Degree of neighbours to be considered for extracting
subgraph
output: sg,(ld): Rooted subgraph of degree d around node n
begin
d
sgs” = {}
if d =0 then
d
\_ sgsL ) = A(n)
else

Np:={n' | (n,n) € E}
MY = {GETWLSUBGRAPH(n/,G,d — 1) | n' € Ny}
sgsld) = sg,(ld)u GETWLSUBGRAPH
(n,G,d—1)® sort(MT(Ld))
(d)

return sgp

WL = Weisefeiler-Lehman
47



Netpro2vec

Inspired by a neural document embedding model doc2vec.

(Skipgram)

« Givena . sample ¢ from /Jand use them to
learn a representation of

. = feed-forward NN to learn distributed representations
of

l. Manipur et al., Netprozvec: a Graph Embedding Framework for Biomedical Applications, |EEE/TCBB 2022

Mario Guarracino

48



Netproz2vec

Inspired by a neural document embedding model doc2vec.

doc2vec Netpro2vec

Se——— (Skipgram) (Skipgram)

Word c-1 word c-1

« Given a labeled graph G, extract ¢ wordsfrom Gand use them
to learn a representation of &

« Doczvec = feed-forward NN to learn distributed representations
of graphs

l. Manipur et al., Netprozvec: a Graph Embedding Framework for Biomedical Applications, |EEE/TCBB 2022

Mario Guarracino 49



Netpro2avec

Inspired by a neural document embedding model doc2vec.

doc2vec
(Skipgram)

Netpro2vec

d tD
ocumen (Skipgram)

Word c-1 word c-1

 Agraphisviewed as a document
« But how can wordsbe extracted by graphs?

l. Manipur et al., Netprozvec: a Graph Embedding Framework for Biomedical Applications, |EEE/TCBB 2022

Mario Guarracino 50



COMMUNICATIONS

Article Open access Published: 09 January 2017

Quantification of network structural dissimilarities

Tiago A. Schieber, Laura Carpi, Albert Diaz-Guilera, Panos M. Pardalos, Cristina Masoller & Martin

G. Ravetti ™

Nature Communications 8, Article number: 13928 (2017) | Cite this article

25k Accesses | 201 Citations | 44 Altmetric | Metrics

Abstract

Identifying and quantifying dissimilarities among graphs is afundamental and challenging
problem of practical importance in many fields of science. Current methods of network
comparison are limited to extract only partial information or are computationally very
demanding. Here we propose an efficient and precise measure for network comparison,
which is based on quantifying differences among distance probability distributions extracted
from the networks. Extensive experiments on synthetic and real-world networks show that
this measure returns non-zero values only when the graphs are non-isomorphic. Most
importantly, the measure proposed here canidentify and quantify structural topological
differences that have a practical impact on the information flow through the network, such as
the presence or absence of critical links that connect or disconnect connected components.



-mpirical distributions

1. Node Distance Distribution (NDD) of node u; in graph G is
the fraction of nodes reachable with a shortest path of length d.

— Nodes in disconnected components will be considered at o
distance.

2. Transition Matrix (TM,) of order s: probability of a node u; to
be reached in s steps by a random walker located in node u;.

— TM;, is the adjacency matrix of the graph rescaled by the
degree of each node.

While NDD provides information about the global topology of the
graph, the TM, contains local information about its connectivity.

Schieber, T. et al. Quantification of network structural dissimilarities. Nat Commun 8, 13928 (2017). 52



Netpro2vec: words extraction

Words are concatenation of node labels with PDs exceed a threshold p

et e . Graph embeddin
Input graph —-> Node distributions —> Words extraction —> P g
(doc2vec)
™1 m | n2 | n3 | na | n5 | ne | n7 vi=n1, p=0.1
ni 0 0.2 0.5 0.1 0.2 0 0 Seqp(vv=tm1 _n1 _n3_n2_n5-
@ n2 033 0 0 0 0 | 033 033 vi=n2 p=0.1
w=2 e S e aes Seqp(vD=tm1_n2_n1_n6_n7

@ @ \w=4
\
w=5 W? w=2 @ T™2 mM | n2  n3 | nd | n5 | n6 | n7 vi=n1, p=0.1

ni 0 0 0 0 0 05 | 05 segp(vi)=tm2_n1_n6_n7;

n2 o | 0o o 1 0 0 0 vi=n2 p=0.1
seqgp(vi)=tm2_n2_n4

o =
. @ NDD 12| 3| 4|5 |6 |7 |8/ 9 vi=n1, p=0
0o 0 o0

nl 01430286 0 0.2860.143 0 seqp(vi)=ndd_n1_2_4_1_5;

vi=n1 p=0.15
seqgp(vi)=ndd_n1_2_4




LFR Dataset

Generated using
Lancichinetti-Fortunato-Radicchi (LFR) software

* 1600 undirected and unweighted graphs
A. 600 with p=0.1
2. 1000 with p=0.5

« 81 nodes for each graph

Class 1
(0.1 p)

Lancichinetti et al, Physical review E, 2008

Dataset available at https:.//qithub.com/leoquti85/GraphEmbs



https://github.com/leoguti85/GraphEmbs

LFR Dataset

Generated using
Lancichinetti-Fortunato-Radicchi (LFR) software

* 1600 undirected and unweighted graphs
A. 600 with p=0.1
2. 1000 with p=0.5

« 81 nodes for each graph

5 communities

L controls the strength of the
community arrangements

Lancichinetti et al, Physical review E 2008 6 communities
Dataset available at https://qithub.com/leoquti85/GraphEmbs
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t-SNE visualization of LFR
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scientific data

DATA DESCRIPTOR '

Generic human
Genome-Scale
Metabolic Model

Context-specific
Genome-Scale
Metabolic Models

Context-specific

Metabolic Networks

(TumorMet)

OPEN :

M) Check for updates

context-specific Genome-Scale
. Metabolic Models

llaria Granata(®'%, Ichcha Manipur(®?, Maurizio Giordano(®?, Lucia Maddalena(®' &
i Mario Rosario Guarracino(®?
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TumorMet: A repository of tumor
metabolic networks derived from
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Metabolites-based
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Enzymes-based

PDGSMMs

Reac;tions--bas'ed
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Metabolites-based
PDGSMMs

Kidney Lung Brain Breast Ovary Prostate
(a) Properties of the Metabolites-based networks from PDGSMMs
# Graphs 737 829 138 920 295 470
# Vertices 2679.05+316.11 2619.5+310.49 2634.49+277.2 2576 +303.92 2576.93+307.47 2676.14 +300.88
# Edges 6121.64 +839.57 6008.53+908.15 6074.34+783.77 5870.26 +841.16 5729.2+837.64 5799.38+769.08
(b) Properties of the Enzymes-based networks from PDGSMMs
# Graphs 737 829 138 920 295 470
# Vertices 1941.256 +300.92 1859.76 +317.84 1911.35+274.35 1846.58 +305.48 1859.98+309.68 1934.25+266.7
# Edges 63906.79+18916.49 59341.79+20947.88 63485.08+17933.19 59530.08+19744.67 59316.15+202888.06 63922+16898.25
(c) Properties of the Reactions-based networks from PDGSMMs
# Graphs 737 829 138 920 295 470
# Vertices 3578.24 +595.037 3511.46+637.32 3560.4+543.41 3431.28+591.12 3327.51+582.49 3398+527.44
# Edges 54823.89+16130.9 60808.68+19146.22 60137 +17749 59467 +18330 49776.08 +17158.5 46345.11+14345.88
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OGB Dataset Overview

The Open Graph Benchmark (OGB) aims to provide
graph datasets that cover important graph machine
learning tasks, diverse dataset scale, and rich domains.

Multiple task categories: We cover three fundamental
graph machine learning task categories: predicting the
properties of nodes, links, and graphs.

Diverse scale: Small-scale graph datasets can be
processed within a single GPU, while medium- and
large-scale graphs might require multiple GPUs and/or
sophisticated mini-batching techniques.

Rich domains: Graph datasets come from diverse
domains and include biological networks, molecular
graphs, academic networks, and knowledge graphs.
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Research directions in GML

Expressivity
— Are we really interested in whether two graph are the same?

» Expressiveness of architectures, uniform results for graph classes, expressiveness vs
computational complexity.

Generalization
— From transductive to inductive methods
« Structure vs generalization, data augmentation, out of sample generalization.
Optimization
— When are significant solutions also relevant?

« Rate of convergence, architectural choices vs convergence, defeating randomness, attention
mechanisms.

Applications

— Are theoretical results aligned with practical applications?
« Domain knowledge vs architectures, learning paradigms, LMM/GPT token style training.

C. Morris et al Future Directions in the Theory of Graph Machine Learning PMLR (2024)
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Conclusions

* Network representations capture interactions and dependencies
among variables or observations,

« Many open problems and possibilities to contribute to the field of
network data analysis.

Learning from networked data unlocks hidden structure and

relationships, enabling richer insights and better decisions than
Isolated-data analysis.

Mario Guarracino 60



