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Introduction
• Network representations capture interactions and dependencies

among variables or observations. 
– These can be extended to consider multiple networks, offering 

flexible and powerful modeling of complex phenomena.
• Graph embedding techniques map nodes, subgraphs, or entire 

(multiple) graphs into a vector space while preserving structural 
properties.

• A rich set of methods, including graph kernels, matrix 
factorization, and deep learning architectures, supports tasks 
such as feature extraction, graph clustering, and classification.
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Example: Node Classification
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Adapted from Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www 5



Essential genes
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Example: Link Prediction
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Example: mafia meetings
• Nodes show members of the 

‘‘ ” and ‘‘ ” families. 
• Circled nodes mark investigated 

association leaders. 
• The red and circles indicates 

bosses of other districts. 
nodes are other relevant 

associates. 
• Edge width reflects meeting 

frequency, and node size reflects 
degree.
Calderoni et al, Robust link prediction in criminal networks: A case study of the Sicilian Mafia, Expert Syst. App., 2020.



Feature 
Engineering

SL Lifecycle
• (Supervised) Statistical Learning Lifecycle: This feature, that

feature. Every single time!

Raw 
Data

Structured 
Data

Learning 
Algorithm  Model

Downstream 
prediction task

Automatically 
learn the features
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Feature learning on graphs
Goal: Efficient task-independent feature learning in networks!

𝑓: 𝑢 ⟶ ℝ!

ℝ!

Feature representation, embedding

𝑢
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Why is it hard?
• Modern deep learning toolboxes are designed for 

simple sequences or grids.
– CNNs for fixed-size images/grids….

– RNNs or word2vec for text/sequences…
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Networks are complex!
• Complex topographical structure (i.e., no spatial locality like grids).

• No fixed node ordering or reference point  (i.e., the isomorphism 
problem)

• Often dynamic and with multimodal features.
Mario Guarracino 13



Traditional approaches
• Traditional graph-based methods follow the pre–deep 

learning paradigm:
– Compute hand-crafted features or statistics first, often guided 

by heuristics or domain expertise;
– Then feed those features into a standard learning algorithm 

such as logistic regression.
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Graph statistics
• Node degree: 𝑑! simply counts the number of edges incident to a node 
𝑢 ∈ 𝒱 :

𝑑! = &
"∈𝒱

𝐀[𝑢, 𝑣]

• Node eigenvector centrality: 𝑒! is recursively defined by a relation in 
which a node’s score is proportional to the sum of its neighbors’ 
centralities:

𝑒! = 1/𝜆&
"∈$

𝐴 𝑢, 𝑣 𝑒" ∀𝑢 ∈ 𝒱,

• where 𝜆 is a constant.
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Graph statistics
• Clustering coefficient:

𝑐! =
|(𝑣%, 𝑣&) ∈ ℰ: 𝑣%, 𝑣& ∈ 𝒩(𝑢)|

𝑑!
2

– Number of edges between neighbors of node 𝑢 in 𝒩 𝑢 = {
}

𝑣 ∈ 𝒱 ∶ 𝑢, 𝑣 ∈
ℰ divided by the total pairs of nodes in 𝑢’s neighborhood.

• The clustering coefficient counts the number of closed triangles within 
each node's local neighborhood.

• We can consider more complex structures, such as cycles of fixed 
length, and characterize nodes by counts in their ego graph.
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Node embeddings
• These methods encode nodes as low-dimensional vectors,

summarizing the structure of their local graph neighborhood.
• In other words, they project nodes into a latent space, where 

geometric relations correspond to relationships (e.g., edges) in the 
original graph.

• Node embeddings can be explained in the framework of 
encoding and decoding graphs. 

17Graphics from WL Hamilton Graph Representation, 2020. 



Encoding and decoding graphs
• First, an encoder model maps each node in the graph into a low-

dimensional vector or embedding. 
• Next, a decoder model takes the low-dimensional node 

embeddings and uses them to reconstruct information about 
each node's neighborhood in the original graph.
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The encoder
• The encoder maps nodes 𝑣 ∈ 𝑉 to vector embedding 𝑧" ∈ ℝ%, 

where 𝑧" corresponds to the embedding for node 𝑣 ∈ 𝑉. 
• In the simplest case, the encoder has the following form:

ENC ∶ 𝑉 → ℝ%

• The encoder often relies on what we call the shallow 
embedding approach, where this encoder is simply an 
embedding lookup based on the node ID: 

ENC(𝑣) = 𝐙[𝑣]
• where 𝐙 ∈ ℝ $ ×% is a matrix containing the embedding vectors 

for all nodes and 𝐙[𝑣] denotes the row of 𝐙 corresponding to 
node 𝑣.

Mario Guarracino 19



The decoder
• The role of the decoder is to reconstruct some graph 

characteristics from the node embeddings that are generated 
by the encoder. 
– For example, given a node 𝑢 embedding 𝐳!, the decoder might 

attempt to predict the neighborhood 𝒩(𝑢) of 𝑢.
• It is standard to define pairwise decoders, which have the 

following signature:
DEC ∶ ℝ%×ℝ% → ℝ'.

• Pairwise decoders can be interpreted as predicting the 
relationship or similarity between pairs of nodes. 
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The decoder
• Applying the pairwise decoder to a pair of embeddings (𝐳!, 𝐳")

results in reconstructing the relationship between 𝑢 and 𝑣. 
• The goal is optimizing the encoder and decoder to minimize

the reconstruction loss, so that:
DEC ENC 𝑢 ; ENC 𝑣 = DEC 𝐳!, 𝐳" ≈ 𝐒[𝑢; 𝑣]

• Here, we assume that 𝐒[𝑢; 𝑣] is a graph-based similarity 
measure between nodes.

• For example, a simple reconstruction objective of predicting 
whether two nodes are neighbors would correspond to 

𝐒 𝑢; 𝑣 ≜ 𝐀 𝑢, 𝑣 .
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Optimizing an Encoder-Decoder
• The standard practice is to minimize an empirical reconstruction 

loss ℒ over a set of training node pairs 𝒟:

ℒ = &
!," ∈𝒟

ℓ DEC 𝐳!, 𝐳" , 𝐒 𝑢; 𝑣 ,

• where ℓ:ℝ×ℝ → ℝ is a loss function measuring the discrepancy
between the estimated DEC 𝐳!, 𝐳" and the true values 𝐒 𝑢; 𝑣 . 

• Depending on the definition of DEC and 𝐒, the loss function ℓ can 
be a mean-squared error or even a classification loss.

• Most approaches minimize the loss using stochastic gradient 
descent, but matrix factorization can be also used.
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Encoder-Decoder Approaches

Mario Guarracino 23



Limits
• Shallow embedding methods do not share any parameters 

between nodes in the encoder, since the encoder directly 
optimizes a unique embedding vector for each node. 

• This lack of parameter sharing is both statistically and 
computationally inefficient. 
– From a statistical perspective, parameter sharing can improve the 

efficiency of learning and also act as a powerful form of regularization. 
– From the computational perspective, the number of parameters 

necessarily grows as 𝒪(|𝑉|), which can be intractable in massive 
graphs.

• Shallow embedding approaches not leverage node features in 
the encoder.
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Graph Neural Networks
• Graph neural network (GNN) formalism is a general 

framework for defining deep neural networks on 
graph data. 

• The key idea is to generate representations of nodes 
that actually depend on the structure of the graph, 
as well as any feature information we might have.
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Neural Message Passing
• The defining feature of a GNN is that it uses a form of neural 

message passing in which vector messages are exchanged 
between nodes and updated using neural networks [Gilmer et al., 
2017].

• We will now focus on the message passing framework itself and 
describe how we can take an input graph 𝒢 = (𝒱, ℰ), along with a 
set of node features 𝐗 ∈ ℝ|𝒱|, and use this information to generate 
node embeddings 𝐳!, 𝑢 ∈ 𝒱. 
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Overview of the Message Passing
• During each message-passing iteration in a GNN, a hidden 

embedding 𝐡!
(-) corresponding to each node 𝑢 ∈ 𝒱 is updated 

according to information aggregated from 𝑢's graph 
neighborhood 𝒩(𝑢)

27



Overview of the Message Passing
• This message-passing update can be expressed as follows:

𝐡!
(-'/) = UPDATE - 𝐡!

- ; AGGREGATE - 𝐡"
- , ∀ 𝑣 ∈ 𝒩 𝑢

==															= UPDATE - 𝐡!
- , 𝐦𝒩(!)

-

• where UPDATE and AGGREGATE are arbitrary differentiable 
functions and 𝐦𝒩(!)

- is the “message" that is aggregated from 𝑢's 
graph neighborhood 𝒩(𝑢). 

S. Scardapane Alice's Adventures in a Differentiable Wonderland (2024)
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Node features
• Unlike the shallow embedding methods, the GNN require node 

features 𝐱!, ∀ 𝑢 ∈ 𝒱 as input to the model. 
• In many applications, we will have rich node features, such as 

gene expression in biological networks or text features in social 
networks. 

• When no node features are available, we can use node statistics, 
such as node degree or centrality, to define features. 

• Another popular approach is to use identity features, where we 
associate each node with a one-hot indicator feature, which 
uniquely identifies that node.
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Intuition
• In addition to structural information, the other key information 

captured by GNN node embedding is feature-based. 
• After 𝑘 iterations, the embedding can encode information about

the degrees of all the nodes in 𝑢's 𝑘-hop neighborhood. 
• This local behavior of GNN is similar to that of the convolutional 

kernels in convolutional neural networks (CNN). 
– While CNNs aggregate features from spatially-defined patches in an 

image, GNNs aggregate information based on local graph 
neighborhoods.
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Graph Attention Network (GAT)
• A popular strategy for improving the aggregation layer in GNN is 

to apply attention [Bahdanau et al., 2015]. 
• The basic idea is to assign an attention weight to each neighbor, 

to weight this neighbor's influence during the aggregation step. 
• A GNN model applying attention is Graph Attention Network 

(GAT) [Veličković et al., 2018], which uses attention weights to 
define a weighted sum of the neighbors:

𝐦𝒩(!) = &
"∈𝒩(!)

𝛼!,"𝐡"
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Neighborhood attention
• Any standard attention model from the deep learning literature at 

large can be used. 
• Popular variants of attention include the bilinear attention model

• as well as variations of attention layers using MLPs
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GAT with multiple heads
• In addition, while it is less common in the GNN literature, it is also 

possible to add multiple attention "heads", in the style of the 
popular transformer architecture [Vaswani et al., 2017]. 

• In this approach, one computes 𝐾 distinct attention weights 𝛼!,",-, 
using independently parameterized attention layers.

• The messages aggregated using the different attention weights 
are then transformed and combined in the aggregation step, 
usually with a linear projection followed by a concatenation 
operation, e.g.,
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Concatenation and Skip-Connections

• One issue with GNN is over-smoothing: after several iterations of 
GNN message passing, the representations for all the nodes can 
become similar to each another.

• Over-smoothing is expected when the information aggregated 
from the node neighbors during message passing begins to 
dominate the updated node representations.
– 𝐡!

(-'/) will strongly depend on the incoming 𝐦𝒩(!)
* message 

aggregated from the neighbors at the expense of the node 
representations 𝐡!

(*) from the previous layers.
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GraphSAGE
• A natural way to alleviate this issue is to directly preserve 

information from previous rounds of message passing during the 
update step using skip connections.

• The connection was proposed in the GraphSAGE and employs a 
concatenation to preserve node-level information during 
message passing:

• where we simply concatenate the output of the base update 
function with the node's previous-layer representation.

38



Heterophily
• Many popular GNNs fail to generalize to networks where 

connected nodes may have different class labels and dissimilar 
features. 

• It can happen that a GNN is outperformed by models that ignore 
the graph structure!

• Possible solutions [Zhu 2020]:
– Ego and neighbor-embedding separation, 
– Higher-order neighborhoods, 
– Combination of intermediate representations.
– Attention-line mechanisms 

• More on this tomorrow – session 9, at 15,15.

Mario Guarracino 39



Explainability vs interpretability
• Most explainability approaches for GNNs are local and post-hoc
– GNNExplainer, PGExplainer, SubgraphX, offering limited global 

insights.
• Interpretability focuses on models that can provide information on 

which nodes are influencing the class predictions [Bechler-
Speicher, 2024]. 
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Graph Transformers
• Can we do better?
– Over-smoothing and over-squashing, structural and positional 

encodings, explainability and interpretability.

41
L. Müller et al. Attending to Graph Transformers, Trans. on Machine Learning Research (2024)



Whole-graph embedding
Given a set of graphs 𝒢 = {𝐺1, … , 𝐺𝑚}with the same set of 
vertices 𝑉, a whole-graph embedding of dimension 𝑑 is an 
encoding ENC

such that ENC preserves some proximity 
measure defined on 𝒢

Whole graph 
embedding

￫ Applications
- Graphs classification
- Graphs clustering
- Visualization
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Functional brain networks
• One network for each patient
• All networks the same nodes
• Nodes represent neural regions 

of interest

Mario Guarracino 43
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Approaches to WGE
Matrix Factorization

❏ Laplacian Eigenmaps
❏ Adjacency Spectral Embedding
❏ Joint Embedding
❏ ...

Neural Network-based
❏ Patchy-San
❏ Graph2vec
❏ sub2vec
❏ Anonymous walk embeddings
❏ Autoencoders
❏ GraphSAGE
❏ DGCNN
❏ U2GNN
❏ ...

Graph Kernels
❏ Weisfeiler-Lehman (WL)
❏ Shortest Path (SP)
❏ Random Walk (RW)
❏ DeepWL
❏ ...
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Graph2vec

• Given a labeled graph G, sample 𝑐 rooted subgraphs* of 
degree d from G to learn a representation of G

• Graph2vec = feed-forward NN to learn distributed 
representations of graphs

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

graph G Graph2vec
(Skipgram)

rooted subgraph 1

rooted subgraph 1

rooted subgraph c-1

rooted subgraph c

* subgraph including all nodes reachable in d hops from the node

45
Narayanan et al., graph2vec: Learning Distributed Representations of Graphs, ArXiv, 2017
Le and Mikolov, Distributed Representations of Sentences and Documents, Proc. ICML, 2014

Inspired by the neural document embedding model doc2vec.



Graph2vec

• A graph is viewed as a document
• The subgraphs of degree 𝑑 rooted in each node are the words 

composing the document
– Subgraph extraction and relabeling follow the WL refinement

46
Narayanan et al., graph2vec: Learning Distributed Representations of Graphs, ArXiv, 2017
Le and Mikolov, Distributed Representations of Sentences and Documents, Proc. ICML, 2014

Inspired by the neural document embedding model doc2vec.

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

graph G Graph2vec
(Skipgram)

rooted subgraph 1

rooted subgraph 1

rooted subgraph c-1

rooted subgraph c



Graph2vec

Mario Guarracino 47
WL = Weisefeiler-Lehman



Inspired by a neural document embedding model doc2vec.
Netpro2vec

I. Manipur et al., Netpro2vec: a Graph Embedding Framework for Biomedical Applications, IEEE/TCBB 2022

• Given a document D, sample c words from D and use them to 
learn a representation of D

• Doc2vec = feed-forward NN to learn distributed representations 
of document sequences

Mario Guarracino 48

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c



Netpro2vec

• Given a labeled graph G, extract c words from G and use them 
to learn a representation of G

• Doc2vec = feed-forward NN to learn distributed representations 
of graphs

graph G Netpro2vec
(Skipgram)

word 1

word 2

word c-1

word c

Mario Guarracino 49

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

Inspired by a neural document embedding model doc2vec.

I. Manipur et al., Netpro2vec: a Graph Embedding Framework for Biomedical Applications, IEEE/TCBB 2022



Netpro2vec
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• A graph is viewed as a document
• But how can words be extracted by graphs?

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

graph G Netpro2vec
(Skipgram)

word 1

word 2

word c-1

word c

Inspired by a neural document embedding model doc2vec.

I. Manipur et al., Netpro2vec: a Graph Embedding Framework for Biomedical Applications, IEEE/TCBB 2022
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Empirical distributions
1. Node Distance Distribution (NDD) of node 𝑢1 in graph G is 

the fraction of nodes reachable with a shortest path of length 𝑑. 
– Nodes in disconnected components will be considered at ∞

distance.
2. Transition Matrix (TMs) of order 𝑠: probability of a node 𝑢1 to 

be reached in  𝑠 steps by a random walker located in node 𝑢2 . 
– TM1 is the adjacency matrix of the graph rescaled by the 

degree of each node.
While NDD provides information about the global topology of the 
graph,  the TMs contains local information about its connectivity.

52Schieber, T. et al. Quantification of network structural dissimilarities. Nat Commun 8, 13928 (2017).



Netpro2vec: words extraction
Words are concatenation of node labels with PDs exceed a threshold p



LFR Dataset
Generated using 

Lancichinetti–Fortunato–Radicchi (LFR) software

• 1600 undirected and unweighted graphs
A. 600 with μ=0.1 
B. 1000 with μ=0.5 

• 81 nodes for each graph

Lancichinetti et al, Physical review E, 2008

Dataset available at https://github.com/leoguti85/GraphEmbs

https://github.com/leoguti85/GraphEmbs


LFR Dataset
Generated using 

Lancichinetti–Fortunato–Radicchi (LFR) software

Lancichinetti et al, Physical review E, 2008

Dataset available at https://github.com/leoguti85/GraphEmbs

6 communities

5 communities

μ controls the strength of the 
community arrangements

• 1600 undirected and unweighted graphs
A. 600 with μ=0.1 
B. 1000 with μ=0.5 

• 81 nodes for each graph

https://github.com/leoguti85/GraphEmbs


99.94±0.19 62.50±0.00

62.50±0.00

99.94±0.19

99.97±0.14

93.71±1.72
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t-SNE visualization of LFR
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Research directions in GML
• Expressivity

– Are we really interested in whether two graph are the same?
• Expressiveness of architectures, uniform results for graph classes, expressiveness vs 

computational complexity.
• Generalization

– From transductive to inductive methods
• Structure vs generalization, data augmentation, out of sample generalization.

• Optimization
– When are significant solutions also relevant?

• Rate of convergence, architectural choices vs convergence, defeating randomness, attention 
mechanisms. 

• Applications
– Are theoretical results aligned with practical applications?

• Domain knowledge vs architectures, learning paradigms, LMM/GPT token style training.

59
C. Morris et al Future Directions in the Theory of Graph Machine Learning PMLR (2024)



Conclusions
• Network representations capture interactions and dependencies

among variables or observations. 
• Many open problems and possibilities to contribute to the field of 

network data analysis.

Learning from networked data unlocks hidden structure and 
relationships, enabling richer insights and better decisions than 
isolated-data analysis.
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