
Embedding Nodes and Whole Graphs:
A Statistical View on Learning from

Networked Data

Mario Guarracino
University of Cassino and Southern Lazio
Italian National Research Council

2Mario Guarracino

Introduction
• Network representations capture interactions and dependencies

among variables or observations.
– These can be extended to consider multiple networks, offering

flexible and powerful modeling of complex phenomena.
• Graph embedding techniques map nodes, subgraphs, or entire

(multiple) graphs into a vector space while preserving structural
properties.

• A rich set of methods, including graph kernels, matrix
factorization, and deep learning architectures, supports tasks
such as feature extraction, graph clustering, and classification.

Mario Guarracino 3

Mario Guarracino

CM Williams

Example: Node Classification

? ?

?
?

?

Adapted from Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www 5

Essential genes

7

Example: Link Prediction

?

?

?

Mario Guarracino 8

Example: mafia meetings
• Nodes show members of the

‘‘ ” and ‘‘ ” families.
• Circled nodes mark investigated

association leaders.
• The red and circles indicates

bosses of other districts.
nodes are other relevant

associates.
• Edge width reflects meeting

frequency, and node size reflects
degree.
Calderoni et al, Robust link prediction in criminal networks: A case study of the Sicilian Mafia, Expert Syst. App., 2020.

Feature
Engineering

SL Lifecycle
• (Supervised) Statistical Learning Lifecycle: This feature, that

feature. Every single time!

Raw
Data

Structured
Data

Learning
Algorithm Model

Downstream
prediction task

Automatically
learn the features

Mario Guarracino 10

Feature learning on graphs
Goal: Efficient task-independent feature learning in networks!

𝑓: 𝑢 ⟶ ℝ!

ℝ!

Feature representation, embedding

𝑢

Mario Guarracino 11

Why is it hard?
• Modern deep learning toolboxes are designed for

simple sequences or grids.
– CNNs for fixed-size images/grids….

– RNNs or word2vec for text/sequences…

Mario Guarracino 12

Networks are complex!
• Complex topographical structure (i.e., no spatial locality like grids).

• No fixed node ordering or reference point (i.e., the isomorphism
problem)

• Often dynamic and with multimodal features.
Mario Guarracino 13

Traditional approaches
• Traditional graph-based methods follow the pre–deep

learning paradigm:
– Compute hand-crafted features or statistics first, often guided

by heuristics or domain expertise;
– Then feed those features into a standard learning algorithm

such as logistic regression.

Mario Guarracino 14

Graph statistics
• Node degree: 𝑑! simply counts the number of edges incident to a node
𝑢 ∈ 𝒱 :

𝑑! = &
"∈𝒱

𝐀[𝑢, 𝑣]

• Node eigenvector centrality: 𝑒! is recursively defined by a relation in
which a node’s score is proportional to the sum of its neighbors’
centralities:

𝑒! = 1/𝜆&
"∈$

𝐴 𝑢, 𝑣 𝑒" ∀𝑢 ∈ 𝒱,

• where 𝜆 is a constant.

Mario Guarracino 15

Graph statistics
• Clustering coefficient:

𝑐! =
|(𝑣%, 𝑣&) ∈ ℰ: 𝑣%, 𝑣& ∈ 𝒩(𝑢)|

𝑑!
2

– Number of edges between neighbors of node 𝑢 in 𝒩 𝑢 = {
}

𝑣 ∈ 𝒱 ∶ 𝑢, 𝑣 ∈
ℰ divided by the total pairs of nodes in 𝑢’s neighborhood.

• The clustering coefficient counts the number of closed triangles within
each node's local neighborhood.

• We can consider more complex structures, such as cycles of fixed
length, and characterize nodes by counts in their ego graph.

Mario Guarracino 16

Node embeddings
• These methods encode nodes as low-dimensional vectors,

summarizing the structure of their local graph neighborhood.
• In other words, they project nodes into a latent space, where

geometric relations correspond to relationships (e.g., edges) in the
original graph.

• Node embeddings can be explained in the framework of
encoding and decoding graphs.

17Graphics from WL Hamilton Graph Representation, 2020.

Encoding and decoding graphs
• First, an encoder model maps each node in the graph into a low-

dimensional vector or embedding.
• Next, a decoder model takes the low-dimensional node

embeddings and uses them to reconstruct information about
each node's neighborhood in the original graph.

18

The encoder
• The encoder maps nodes 𝑣 ∈ 𝑉 to vector embedding 𝑧" ∈ ℝ%,

where 𝑧" corresponds to the embedding for node 𝑣 ∈ 𝑉.
• In the simplest case, the encoder has the following form:

ENC ∶ 𝑉 → ℝ%

• The encoder often relies on what we call the shallow
embedding approach, where this encoder is simply an
embedding lookup based on the node ID:

ENC(𝑣) = 𝐙[𝑣]
• where 𝐙 ∈ ℝ $ ×% is a matrix containing the embedding vectors

for all nodes and 𝐙[𝑣] denotes the row of 𝐙 corresponding to
node 𝑣.

Mario Guarracino 19

The decoder
• The role of the decoder is to reconstruct some graph

characteristics from the node embeddings that are generated
by the encoder.
– For example, given a node 𝑢 embedding 𝐳!, the decoder might

attempt to predict the neighborhood 𝒩(𝑢) of 𝑢.
• It is standard to define pairwise decoders, which have the

following signature:
DEC ∶ ℝ%×ℝ% → ℝ'.

• Pairwise decoders can be interpreted as predicting the
relationship or similarity between pairs of nodes.

Mario Guarracino 20

The decoder
• Applying the pairwise decoder to a pair of embeddings (𝐳!, 𝐳")

results in reconstructing the relationship between 𝑢 and 𝑣.
• The goal is optimizing the encoder and decoder to minimize

the reconstruction loss, so that:
DEC ENC 𝑢 ; ENC 𝑣 = DEC 𝐳!, 𝐳" ≈ 𝐒[𝑢; 𝑣]

• Here, we assume that 𝐒[𝑢; 𝑣] is a graph-based similarity
measure between nodes.

• For example, a simple reconstruction objective of predicting
whether two nodes are neighbors would correspond to

𝐒 𝑢; 𝑣 ≜ 𝐀 𝑢, 𝑣 .

Mario Guarracino 21

Optimizing an Encoder-Decoder
• The standard practice is to minimize an empirical reconstruction

loss ℒ over a set of training node pairs 𝒟:

ℒ = &
!," ∈𝒟

ℓ DEC 𝐳!, 𝐳" , 𝐒 𝑢; 𝑣 ,

• where ℓ:ℝ×ℝ → ℝ is a loss function measuring the discrepancy
between the estimated DEC 𝐳!, 𝐳" and the true values 𝐒 𝑢; 𝑣 .

• Depending on the definition of DEC and 𝐒, the loss function ℓ can
be a mean-squared error or even a classification loss.

• Most approaches minimize the loss using stochastic gradient
descent, but matrix factorization can be also used.

Mario Guarracino 22

Encoder-Decoder Approaches

Mario Guarracino 23

Limits
• Shallow embedding methods do not share any parameters

between nodes in the encoder, since the encoder directly
optimizes a unique embedding vector for each node.

• This lack of parameter sharing is both statistically and
computationally inefficient.
– From a statistical perspective, parameter sharing can improve the

efficiency of learning and also act as a powerful form of regularization.
– From the computational perspective, the number of parameters

necessarily grows as 𝒪(|𝑉|), which can be intractable in massive
graphs.

• Shallow embedding approaches not leverage node features in
the encoder.

Mario Guarracino 24

Graph Neural Networks
• Graph neural network (GNN) formalism is a general

framework for defining deep neural networks on
graph data.

• The key idea is to generate representations of nodes
that actually depend on the structure of the graph,
as well as any feature information we might have.

Mario Guarracino 25

Neural Message Passing
• The defining feature of a GNN is that it uses a form of neural

message passing in which vector messages are exchanged
between nodes and updated using neural networks [Gilmer et al.,
2017].

• We will now focus on the message passing framework itself and
describe how we can take an input graph 𝒢 = (𝒱, ℰ), along with a
set of node features 𝐗 ∈ ℝ|𝒱|, and use this information to generate
node embeddings 𝐳!, 𝑢 ∈ 𝒱.

Mario Guarracino 26

Overview of the Message Passing
• During each message-passing iteration in a GNN, a hidden

embedding 𝐡!
(-) corresponding to each node 𝑢 ∈ 𝒱 is updated

according to information aggregated from 𝑢's graph
neighborhood 𝒩(𝑢)

27

Overview of the Message Passing
• This message-passing update can be expressed as follows:

𝐡!
(-'/) = UPDATE - 𝐡!

- ; AGGREGATE - 𝐡"
- , ∀ 𝑣 ∈ 𝒩 𝑢

==															= UPDATE - 𝐡!
- , 𝐦𝒩(!)

-

• where UPDATE and AGGREGATE are arbitrary differentiable
functions and 𝐦𝒩(!)

- is the “message" that is aggregated from 𝑢's
graph neighborhood 𝒩(𝑢).

S. Scardapane Alice's Adventures in a Differentiable Wonderland (2024)

Mario Guarracino 28

https://arxiv.org/abs/2404.17625

Node features
• Unlike the shallow embedding methods, the GNN require node

features 𝐱!, ∀ 𝑢 ∈ 𝒱 as input to the model.
• In many applications, we will have rich node features, such as

gene expression in biological networks or text features in social
networks.

• When no node features are available, we can use node statistics,
such as node degree or centrality, to define features.

• Another popular approach is to use identity features, where we
associate each node with a one-hot indicator feature, which
uniquely identifies that node.

Mario Guarracino 29

Intuition
• In addition to structural information, the other key information

captured by GNN node embedding is feature-based.
• After 𝑘 iterations, the embedding can encode information about

the degrees of all the nodes in 𝑢's 𝑘-hop neighborhood.
• This local behavior of GNN is similar to that of the convolutional

kernels in convolutional neural networks (CNN).
– While CNNs aggregate features from spatially-defined patches in an

image, GNNs aggregate information based on local graph
neighborhoods.

Mario Guarracino 30

Graph Attention Network (GAT)
• A popular strategy for improving the aggregation layer in GNN is

to apply attention [Bahdanau et al., 2015].
• The basic idea is to assign an attention weight to each neighbor,

to weight this neighbor's influence during the aggregation step.
• A GNN model applying attention is Graph Attention Network

(GAT) [Veličković et al., 2018], which uses attention weights to
define a weighted sum of the neighbors:

𝐦𝒩(!) = &
"∈𝒩(!)

𝛼!,"𝐡"

Mario Guarracino 34

Neighborhood attention
• Any standard attention model from the deep learning literature at

large can be used.
• Popular variants of attention include the bilinear attention model

• as well as variations of attention layers using MLPs

Mario Guarracino 35

GAT with multiple heads
• In addition, while it is less common in the GNN literature, it is also

possible to add multiple attention "heads", in the style of the
popular transformer architecture [Vaswani et al., 2017].

• In this approach, one computes 𝐾 distinct attention weights 𝛼!,",-,
using independently parameterized attention layers.

• The messages aggregated using the different attention weights
are then transformed and combined in the aggregation step,
usually with a linear projection followed by a concatenation
operation, e.g.,

Mario Guarracino 36

Concatenation and Skip-Connections

• One issue with GNN is over-smoothing: after several iterations of
GNN message passing, the representations for all the nodes can
become similar to each another.

• Over-smoothing is expected when the information aggregated
from the node neighbors during message passing begins to
dominate the updated node representations.
– 𝐡!

(-'/) will strongly depend on the incoming 𝐦𝒩(!)
* message

aggregated from the neighbors at the expense of the node
representations 𝐡!

(*) from the previous layers.

37

GraphSAGE
• A natural way to alleviate this issue is to directly preserve

information from previous rounds of message passing during the
update step using skip connections.

• The connection was proposed in the GraphSAGE and employs a
concatenation to preserve node-level information during
message passing:

• where we simply concatenate the output of the base update
function with the node's previous-layer representation.

38

Heterophily
• Many popular GNNs fail to generalize to networks where

connected nodes may have different class labels and dissimilar
features.

• It can happen that a GNN is outperformed by models that ignore
the graph structure!

• Possible solutions [Zhu 2020]:
– Ego and neighbor-embedding separation,
– Higher-order neighborhoods,
– Combination of intermediate representations.
– Attention-line mechanisms

• More on this tomorrow – session 9, at 15,15.

Mario Guarracino 39

Explainability vs interpretability
• Most explainability approaches for GNNs are local and post-hoc
– GNNExplainer, PGExplainer, SubgraphX, offering limited global

insights.
• Interpretability focuses on models that can provide information on

which nodes are influencing the class predictions [Bechler-
Speicher, 2024].

Mario Guarracino 40

Graph Transformers
• Can we do better?
– Over-smoothing and over-squashing, structural and positional

encodings, explainability and interpretability.

41
L. Müller et al. Attending to Graph Transformers, Trans. on Machine Learning Research (2024)

Whole-graph embedding
Given a set of graphs 𝒢 = {𝐺1, … , 𝐺𝑚}with the same set of
vertices 𝑉, a whole-graph embedding of dimension 𝑑 is an
encoding ENC

such that ENC preserves some proximity
measure defined on 𝒢

Whole graph
embedding

￫ Applications
- Graphs classification
- Graphs clustering
- Visualization

Mario Guarracino 42

ENC: 𝐺+ ∈ 𝒢 ⟶ 𝑦+ ∈ ℝ, , 𝑖 ∈ 1, … , |𝒢|

Functional brain networks
• One network for each patient
• All networks the same nodes
• Nodes represent neural regions

of interest

Mario Guarracino 43

Hagmann et al., Mapping the Structural Core of Human Cerebral Cortex, PLoS Biology, 2008

Approaches to WGE
Matrix Factorization

❏ Laplacian Eigenmaps
❏ Adjacency Spectral Embedding
❏ Joint Embedding
❏ ...

Neural Network-based
❏ Patchy-San
❏ Graph2vec
❏ sub2vec
❏ Anonymous walk embeddings
❏ Autoencoders
❏ GraphSAGE
❏ DGCNN
❏ U2GNN
❏ ...

Graph Kernels
❏ Weisfeiler-Lehman (WL)
❏ Shortest Path (SP)
❏ Random Walk (RW)
❏ DeepWL
❏ ...

Mario Guarracino 44

Graph2vec

• Given a labeled graph G, sample 𝑐 rooted subgraphs* of
degree d from G to learn a representation of G

• Graph2vec = feed-forward NN to learn distributed
representations of graphs

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

graph G Graph2vec
(Skipgram)

rooted subgraph 1

rooted subgraph 1

rooted subgraph c-1

rooted subgraph c

* subgraph including all nodes reachable in d hops from the node

45
Narayanan et al., graph2vec: Learning Distributed Representations of Graphs, ArXiv, 2017
Le and Mikolov, Distributed Representations of Sentences and Documents, Proc. ICML, 2014

Inspired by the neural document embedding model doc2vec.

Graph2vec

• A graph is viewed as a document
• The subgraphs of degree 𝑑 rooted in each node are the words

composing the document
– Subgraph extraction and relabeling follow the WL refinement

46
Narayanan et al., graph2vec: Learning Distributed Representations of Graphs, ArXiv, 2017
Le and Mikolov, Distributed Representations of Sentences and Documents, Proc. ICML, 2014

Inspired by the neural document embedding model doc2vec.

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

graph G Graph2vec
(Skipgram)

rooted subgraph 1

rooted subgraph 1

rooted subgraph c-1

rooted subgraph c

Graph2vec

Mario Guarracino 47
WL = Weisefeiler-Lehman

Inspired by a neural document embedding model doc2vec.
Netpro2vec

I. Manipur et al., Netpro2vec: a Graph Embedding Framework for Biomedical Applications, IEEE/TCBB 2022

• Given a document D, sample c words from D and use them to
learn a representation of D

• Doc2vec = feed-forward NN to learn distributed representations
of document sequences

Mario Guarracino 48

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

Netpro2vec

• Given a labeled graph G, extract c words from G and use them
to learn a representation of G

• Doc2vec = feed-forward NN to learn distributed representations
of graphs

graph G Netpro2vec
(Skipgram)

word 1

word 2

word c-1

word c

Mario Guarracino 49

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

Inspired by a neural document embedding model doc2vec.

I. Manipur et al., Netpro2vec: a Graph Embedding Framework for Biomedical Applications, IEEE/TCBB 2022

Netpro2vec

Mario Guarracino 50

• A graph is viewed as a document
• But how can words be extracted by graphs?

document D doc2vec
(Skipgram)

Word 1

Word 2

Word c-1

Word c

graph G Netpro2vec
(Skipgram)

word 1

word 2

word c-1

word c

Inspired by a neural document embedding model doc2vec.

I. Manipur et al., Netpro2vec: a Graph Embedding Framework for Biomedical Applications, IEEE/TCBB 2022

Mario Guarracino 51

Empirical distributions
1. Node Distance Distribution (NDD) of node 𝑢1 in graph G is

the fraction of nodes reachable with a shortest path of length 𝑑.
– Nodes in disconnected components will be considered at ∞

distance.
2. Transition Matrix (TMs) of order 𝑠: probability of a node 𝑢1 to

be reached in 𝑠 steps by a random walker located in node 𝑢2 .
– TM1 is the adjacency matrix of the graph rescaled by the

degree of each node.
While NDD provides information about the global topology of the
graph, the TMs contains local information about its connectivity.

52Schieber, T. et al. Quantification of network structural dissimilarities. Nat Commun 8, 13928 (2017).

Netpro2vec: words extraction
Words are concatenation of node labels with PDs exceed a threshold p

LFR Dataset
Generated using

Lancichinetti–Fortunato–Radicchi (LFR) software

• 1600 undirected and unweighted graphs
A. 600 with μ=0.1
B. 1000 with μ=0.5

• 81 nodes for each graph

Lancichinetti et al, Physical review E, 2008

Dataset available at https://github.com/leoguti85/GraphEmbs

https://github.com/leoguti85/GraphEmbs

LFR Dataset
Generated using

Lancichinetti–Fortunato–Radicchi (LFR) software

Lancichinetti et al, Physical review E, 2008

Dataset available at https://github.com/leoguti85/GraphEmbs

6 communities

5 communities

μ controls the strength of the
community arrangements

• 1600 undirected and unweighted graphs
A. 600 with μ=0.1
B. 1000 with μ=0.5

• 81 nodes for each graph

https://github.com/leoguti85/GraphEmbs

99.94±0.19 62.50±0.00

62.50±0.00

99.94±0.19

99.97±0.14

93.71±1.72

Mario Guarracino 56

t-SNE visualization of LFR

Mario Guarracino 58

Research directions in GML
• Expressivity

– Are we really interested in whether two graph are the same?
• Expressiveness of architectures, uniform results for graph classes, expressiveness vs

computational complexity.
• Generalization

– From transductive to inductive methods
• Structure vs generalization, data augmentation, out of sample generalization.

• Optimization
– When are significant solutions also relevant?

• Rate of convergence, architectural choices vs convergence, defeating randomness, attention
mechanisms.

• Applications
– Are theoretical results aligned with practical applications?

• Domain knowledge vs architectures, learning paradigms, LMM/GPT token style training.

59
C. Morris et al Future Directions in the Theory of Graph Machine Learning PMLR (2024)

Conclusions
• Network representations capture interactions and dependencies

among variables or observations.
• Many open problems and possibilities to contribute to the field of

network data analysis.

Learning from networked data unlocks hidden structure and
relationships, enabling richer insights and better decisions than
isolated-data analysis.

Mario Guarracino 60

